Skip to main content
Log in

A report on HIPERLAN standardization

  • Report on Standards
  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

HIPERLAN is the new European standard for radio LANs currently being formulated by ETSI RES10 for operation at 5 GHz and 17 GHz. It will be suitable for radio replacement of wired LANs and for ad hoc networking providing a user data rate of 10–20 Mbit/s. This paper is a review of the work of ETSI RES10 on the formulation of the HIPERLAN standard. The origins of ETSI RES10 are documented. The targets set for HIPERLAN and the problems in achieving these targets are discussed. The paper reviews the technical arguments for and against the proposed solutions to these problems, concentrating on the design of the transmission scheme and the channel access mechanism. The discussions leading to significant decisions about the standard are summarized. If the FCC in the United States of America allocate the equivalent 5 GHz band to unlicensed wireless LAN systems, many of these discussions will be revisited for future standards in this band. The paper will be of interest to anyone in academia or industry wishing to be brought quickly up to date with the state of the standard in order to focus their research or development activities. The paper also gives a general insight into the technical side of the standards formulation process in ETSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. A. Allen, Path loss: a survey, RES10R 92/24.

  2. T. A. Wilkinson, I. R. Johnson, S. K. Barton and S. A. Black, A new transmission/resource sharing scheme for radio LANs, RES10R 92/29.

  3. T. A. Wilkinson and S. K. Barton, Co-existence of radio local area networks with the microwave landing system, RES10R 92/32.

  4. T. A. Wilkinson and S. K. Barton, Radio propagation in buildings for radio LANs, RES10R 92/33.

  5. S. A. Black, M. Smith and T. A. Wilkinson, Analysis of a wireless LAN MAC protocol, RES10R 92/35.

  6. E. Khayata, Intersymbol interference (ISI) survey, RES10R 92/39.

  7. P. Chadwick, Intermodulation in multi-carrier FDM systems, RES10TTG 93/05.

  8. T. A. Wilkinson, A. E. Jones and S. K. Barton, An alternative multi-carrier scheme with increased tolerance to system nonlinearities and reduced complexity. RES10TTG 93/10.

  9. J. Kruys, Scenarios, RES10TTG 93/13.

  10. A. Nix, M. Beach and J. McGeehan, System coverage and channel modelling RES10TTG 93/22.

  11. A. Nix, H. Xue, Mu Li, M. Beach, D. Bull, J. McGeehan, I. R. Johnson, T. A. Wilkinson and S. K. Barton, Equalisation—a solution for HIPERLAN?, RES10TTG 93/23.

  12. J. Mckown, A simple indoor microwave channel model with realistic motion effects, RES10TTG 93/26.

  13. G. Halls/PT41, Radio channel simulation report, RES10TTG 93/35.

  14. P. Ransome/PT41, A possible channelisation/modulation scheme for HIPERLAN, RES10TTG 93/37.

  15. P. Ransome/PT41, HIPERLAN: co-location of nodes, RES10TTG 93/44.

  16. G. Halls/PT41, Software implementation of the HIPERLAN channel model, RES10TTG 93/46.

  17. S. W. Wales, Receiver signal processing requirements of HIPERLAN modulation schemes, RES10TTG 93/51.

  18. M. Aldinger and A. Muller, Simulated COFDM packet error probability with simple multipath profiles, RES10TTG 93/53.

  19. A. E. Jones, I. R. Johnson, T. A. Wilkinson, S. K. Barton, A. Nix, Mu Li, H. Xue and M. Beach, Comments on the proposal of CP4FSK for HIPERLAN, RES10TTG 93/57.

  20. G. Halls/PT41, HIPERLAN radio channel models and simulation results, RES10TTG 93/58.

  21. G. Halls/PT41, Complexity estimation for equalisers for HIPERLAN, RES10TTG 93/59.

  22. G. Halls/PT41, Frequency re-use and system capacity considerations, RES10TTG 93/60.

  23. Radio Communications agency UK, HIPERLAN indoor channel impulse response soundings at 5.2 GHz, RES10TTG 93/64.

  24. S. W. Wales, Further results on a OQPSK modulation scheme for HIPERLAN, RES10TTG 93/65.

  25. Influence of nonlinear amplification on COFDM signals, RES10TTG 93/69.

  26. Mu Li, A. Nix, J. Marvill, M. Beach, T. A. Wilkinson, I. R. Johnson and S. K. Barton, LAURA modem design issues, RES10TTG 93/77.

  27. A. R. Nix, HIPERLAN compatible modulation and equalisation techniques—what are the real choices, RES10TTG 93/78.

  28. Radio Communications Agency UK, HIPERLAN 17 GHz initial soundings at RTL, RES10TTG 93/81.

  29. Radio Communications Agency UK, Comparative indoor channel soundings, RES10TTG 94/05.

  30. T. F. Cox and F. D. Natali, Equaliser simulation, RES10TTG 94/07.

  31. AT&T, Linear amplifier performance, RES10TTG 94/08.

  32. LAURA, The LAURA proposal, RES10TTG 94/15.

  33. Elettronica/LAURA, Hardware implementation and testing for feasibility of the comb MAC from a radio perspective, RES10TTG 94/24.

  34. W. Diepstraten, Channel access mechanism for HIPERLAN, RES10TTG 94/25.

  35. H. van Driest, H. van Bokhorst and R. Krishnamoorthy, L. J. Cimini, B. Daneshrad, D. Pal, A. Kamerman, Evaluation criteria for modulation techniques schemes, RES10TTG 94/32.

  36. G. Halls/PT41, Carrier spacing and guard bands for candidate modulation schemes, RES10TTG 94/33.

  37. A. Nix, Mu Li, M. Beach, I. R. Johnson, T. A. Wilkinson and S. K. Barton, A summary of the LAURA air-interface technique, RES10TTG 94/39.

  38. T. F. Cox and F. D. Natali, Further results on the application of equalization, forward error correction coding, and antenna diversity in the HIPERLAN environment, RES10TTG 94/43.

  39. J. Lundblad, Simulation results for coded 8-level full-response continuous phase modulation. RES10TTG 94/44.

  40. Radiocommunications Agency UK, Comparative indoor RF channel soundings at 2, 5 and 17 GHz, RES10TTG 94/48.

  41. P. Jaquet and P. Mulethaler, Consensus contention CSMA protocol, LAURA updated proposal for HIPERLAN, RES10TTG 94/51.

  42. Elettronica/LAURA, Carrier sense testing in LAURA demonstrator for comb approach, RES10TTG 94/57.

  43. C. N. Wilson, A comparison of channel access proposals—an RF perspective, RES10TTG 94/59.

  44. Symboinics/AT&T, A CAM for HIPERLAN—CSMA with active priority RES10TTG 94/60.

  45. G. Halls/PT41 HIPERLAN: a proposed channelisation scheme, RES10TTG 94/64.

  46. ETSI/PT41, Radio equipment and systems (RES) high performance radio local area network (HIPERLAN) functional specification, RES10TTG 95/07.

  47. B. Bourin, HIPERLAN—markets and applications standardisation issues, WCN, pp. 863–868, 1994.

  48. ETSI TC RES, Radio equipment and systems high performance radio local area network (HIPERLAN); system definition document, ETR 133, June 1994.

  49. ETSI TC RES, Radio equipment and systems high performance radio local area network (HIPERLAN); services and facilities, ETR 069, February 1993.

  50. CEPT, Relating to the harmonised radio frequency bands for high performance radio local area network, CEPT Recommendation T/R 22-06, 1992.

  51. T. A. Wilkinson, Channel modelling and link simulation for the DECT test bed,IEE 6th Int. Conf. on Mobile Radio and Personal Communications, pp. 293–299, 1991.

  52. P. Nobles, D. Ashworth and F. Halsall, Indoor radiowave propagation measurements at frequencies up to 20 GHz,IEEE 44th VTC, pp. 873–877, 1994.

  53. G. A. Halls, Modelling the HIPERLAN radio channel, WCN, pp. 954–958, 1994.

  54. M. Alard and R. Lassalle, Principles of modulation and coding for digital audio broadcast for mobile receivers,EBU Technical Review, No. 224, August, pp. 47–69, 1987.

    Google Scholar 

  55. J. A. C. Bingham, Multicarrier modulation for data transmission; an idea whose time has come,IEEE Comm. Mag., pp. 5–14, May 1990.

  56. M. Aldinger, Multicarrier COFDM scheme in high bit rate radio local area networks, WCN, pp. 969–973, 1994.

  57. M. Li, T. A. Wilkinson, M. Beach, S. K. Barton, H. Xue, I. R. Johnson and A. Nix, Analysis of intermodulation distortion specification for radio LANs using multicarrier modulation schemes,Electronics Letters, Vol. 29, No. 13, pp. 1229–1230, 1993.

    Google Scholar 

  58. R. O'Neil and L. B. Lopes, Performance of amplitude limited multitone signals,IEEE 44th VTC, pp. 1675–1679, 1994.

  59. S. U. H. Qureshi, Adaptive equalisation,Proc. IEEE, Vol. 73, No. 9, pp. 1349–1387, 1985.

    Google Scholar 

  60. S. W. Wales, Modulation and equalisation techniques for HIPERLAN, WCN, pp. 959–963, 1994.

  61. A. Nix, M. Li, J. Marvill, T. Wilkinson, I. Johnson, S. Barton, Modulation and equalisation considerations for high performance radio LANs (HIPERLAN), WCN, pp. 964–968, 1994.

  62. J. F. Whitehead and R. Krishnamoorthy, FEC, ARQ and throughput of radio LANs, IEEE 44th VTC, pp. 1430–1434, 1994.

  63. IEEE 802.11 (Wireless Local Area Networks) Wireless LAN medium access control (MAC) and physical layer (PHY) specification, IEEE 802.11 93/20.

  64. P. Jaquet, P. Mulethaler and N. Riviere, Collision detection in HIPERLAN, WCN, pp. 875–879, 1994.

  65. A Kamerman and J. Whitehead, Equilibrium analysis of ALOHA and CSMA in wireless networks, WCN, pp. 825–830, 1994.

  66. R. E. Khayata, C. M. Puig and J. M. Zweig, A distributed medium access mechanism for wireless LANs, RES10SAG 93/73.

  67. L. Kleinrock and Y. Yemini, An optimal adaptive scheme for multiple access broadcast communication,International Communications Conference (ICC) pp. 7.2.1–7.2.5, 1978.

  68. I. R. Johnson, T. A. Wilkinson, A. E. Jones and S. K. Barton, On suitable codes for frame synchronisation in packet radio LANs,IEEE 44th VTC, pp. 1421–1424, 1994.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkinson, T., Phipps, T.G.C. & Barton, S.K. A report on HIPERLAN standardization. Int J Wireless Inf Networks 2, 99–120 (1995). https://doi.org/10.1007/BF01464460

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01464460

Keywords

Navigation