Skip to main content
Log in

The “hydrophobic effect”: Essentially a van der Waals interaction

  • Original Contributions
  • Colloid Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Summary

It has been shown thermodynamically, and illustrated by means of a typical example, that the preferential attraction between hydrophobic determinants immersed in water, commonly alluded to as the “hydrophobic effect”, can be entirely ascribed to van der Waals interactions. Quantitatively, in water, the attraction between two hydrophobic determinants is stronger than the attraction between a hydrophobic and a hydrophilic determinant, although the latter attraction is not so small as to be negligible. The interaction between hydrophilic determinants in water is attractive but small and may be easily overwhelmed by the electrostatic repulsion which occurs between such entities.

There is no repulsion by the solvent. On the contrary, the attraction between water and a hydrophobic material as well as between water and a hydrophilic material is strong. This interaction does play a role in determining the overall strength of the interaction between hydrophobic and hydrophilic determinants but cannot render the attraction between such determinants negligible. The attraction between hydrophobic and hydrophilic determinants in an aqueous medium can be made exeedingly small and may indeed (after lowering the surface tension of the liquid) be changed into a repulsion. The latter phenomenon is used in the elution step of the protein separation method called “hydrophobic chromatography”.

Zusammenfassung

Es wird auf thermodynamischer Grundlage gezeigt und an Hand eines typischen Beispiels erläutert, daß die Anziehung zwischen hydrophoben Partikel in Wasser vollständig durch van der Waals-Wechselwirkungen erklärt werden kann. Die Anziehung zwischen solchen Teilchen oder Molekülen ist stärker als die Anziehung zwischen hydrophoben und hydrophilen Partikeln in Wasser, die jedoch nicht vernachlässigbar klein ist. Die Wechselwirkung zwischen hydrophilen Partikeln ist so klein, daß sie leicht von elektrostatischen Wechselwirkungen überdeckt werden kann.

Eine Abstoßung durch das Lösungsmittel findet nicht statt. Im Gegenteil, die Anziehung zwischen Wasser und einem hydrophoben Material ebenso wie diejenige zwischen Wasser und einem hydrophilen Material ist beträchtlich. Diese Wechselwirkung spielt zwar eine Rolle in der gesamten Wechselwirkung zwischen hydrophoben und hydrophilen Partikeln, kann aber die Anziehung zwischen hydrophob und hydrophil in Wasser nicht zum Verschwinden bringen. Die Wechselwirkung zwischen hydrophob und hydrophil kann jedoch durch Erniedrigung der Oberflächenspannung des Wassers abstoßend gemacht werden. Dieser Umstand wird im Elutionsschritt des als “hydrophobe Chromatographie” bekannten Verfahrens zur Trennung von Proteinen benutzt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanford, C., The Hydrophobic Effect: Formation of Micelles and Biological Membranes, Wiley-Intersciences, (New York, 1973).

    Google Scholar 

  2. Tanford, C., Science200, 1012 (1978).

    PubMed  Google Scholar 

  3. Franks, F., Nature270, 386 (1977).

    Google Scholar 

  4. Hildebrand, J. H., J. Phys. Chem.72, 1841 (1968).

    Google Scholar 

  5. Hildebrand, J. H., Proc. Natl. Acad. Sci., U.S.A.76, 184 (1979).

    Google Scholar 

  6. Hamaker, H. C., Physica4, 1058 (1937).

    Google Scholar 

  7. Neumann, A. W., S. N. Omenyi, C. J. van Oss, Colloid Polymer Sci.257, 413 (1979).

    Google Scholar 

  8. van Oss, C. J., S. N. Omenyi, A. W. Neumann, Colloid Polymer Sci.257, 737 (1979).

    Google Scholar 

  9. van Oss, C. J., A. W. Neumann, S. N. Omenyi, D. R. Absolom, Separ. Purif. Method.7, 245 (1978).

    Google Scholar 

  10. Israelachvili, J. N., J. Chem. Soc. Faraday Trans. II,69, 1729 (1973).

    Google Scholar 

  11. Israelachvili, J. N., Quart. Rev. Biophys.6, 341 (1974).

    Google Scholar 

  12. Neumann, A. W., R. J. Good, C. J. Hope, M. Sejpal, J. Colloid Interf. Sci.49, 291 (1974).

    Google Scholar 

  13. Visser, J., Adv. Colloid Interf. Sci.3, 331 (1972).

    Google Scholar 

  14. Colacicco, G., Ann. N.Y. Acad. Sci.195, 224 (1972).

    PubMed  Google Scholar 

  15. van Oss, C. J., J. M. Singer, J. Reticuloendothelial Soc.3, 29 (1966).

    Google Scholar 

  16. van Oss, C. J., D. R. Absolom, A. W. Neumann, Separ. Sci. Technol.14, 305 (1979).

    Google Scholar 

  17. Derjaguin, B. J., Disc. Faraday Soc.13, 85 (1954)

    Google Scholar 

  18. Visser, J., Rep. Progr. Appl. Chem.53, 714 (1968).

    Google Scholar 

  19. Visser, J., in:E. Matijević, Ed.: Suface and Colloid Science p. 3, Wiley-Interscience, (New York 1976).

    Google Scholar 

  20. Fowkes, F. M., in:J. J. Burke, Ed.: Surfaces and Interfaces, Vol. 1, p. 197, Syracuse Univ. Press (New York 1967).

    Google Scholar 

  21. Omenyi, S. N., Attraction and Repulsion of Particles by Solidifying Melts, Ph. D. Dissertation, University of Toronto (1978).

  22. van Oss, C. J., D. R. Absolom, A. L. Grossberg, A. W. Neumann, Immunol. Commun.8, 11 (1979).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Oss, C.J., Absolom, D.R. & Neumann, A.W. The “hydrophobic effect”: Essentially a van der Waals interaction. Colloid & Polymer Sci 258, 424–427 (1980). https://doi.org/10.1007/BF01480835

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01480835

Keywords

Navigation