Skip to main content
Log in

The interaction of water-soluble α, ω-disubstituted alkanes (bolaform compounds) with polyvinylpyrrolidone in aqueous solution

  • Originalarbeiten
  • Polymere
  • Published:
Kolloid-Zeitschrift und Zeitschrift für Polymere Aims and scope Submit manuscript

Summary

The published work on the interactions between polyvinylpyrrolidone (PVP) and small-molecule solutes (cosolutes) in aqueous solution has been briefly surveyed. The further information on these types of interaction which the proposed study ofα,ω-disubstituted aliphatic cosolutes, of the general type X(CH2) m Y (bolaform compounds), was hoped to yield has been outlined. The technique of equilibrium dialysis (employing two-compartment acrylate cells) has been used to study the interaction between PVP in aqueous solution at 25 °C and the following eight symmetrical (X=Y) bolaform cosolutes: X=SO4 Na,m=8, 10 and 12 (A, B and C); X=CO2 K,m=10 (D); X=N(CH3)3 Br,m=10 (E); X=NH3 Cl,m=8, 10 and 12 (F, G and H). The maximum total cosolute concentrations used were between 100 and 230 millimolal. The equilibrated dialysis-cell solutions were assayed by differential refractometry; the data obtained were converted into the values ofa, the concentration of free cosolute, andr, the concurrent number of moles of cosolute bound per base mole (vinylpyrrolidone unit) of the polymer. The limit of detectable binding wasr=0.005 for all cosolutes. The results showed that of the three disulphates (A, B and C), the octamethylene compound (A) was not detectably bound while the deca- and dodecamethylene compounds (B and C) had binding isotherms of the hyperbolic (Langmuir) form:r =nKa/(1 +Ka), withK=65 (±20) molal−1 andn=0.057 (±0.005) form=10, andK=16 (±2) molal−1 andn=0.139 (±0.005) form=12; the other anionic cosolute (D) was not detectably bound. Of the cationic cosolutes (E, F, G and H), Decamethonium bromide (E) had a non-hyperbolic binding isotherm with a maximum ata=75 millimolal ofr∼~0.025; the three di(ammonium chloride)s (F, G and H) were not detectably bound. The refractive index increments and densities of the aqueous solutions of the same eight compounds have also been determined; the results did not show any anomalies which could definitely be attributed to association or micellisation, except in the case of Decamethonium bromide where ion-pairing is known to take place. The marked difference in binding behaviour between the anionic cosolutes and the cationic ones is attributed to the different environments of the positive and negative ends of the dipolar imide groups in the pyrrolidone rings of PVP; the binding data are discussed in terms of the polar (ion-dipole) and non-polar (hydrophobic) forces between cosolute and polymer, and of the relative roles played by the value of the end-to-end distance for the cosolute molecule and by any direct hydrophobic interactions in determining the dependence of binding behaviour upon cosolute chain length,m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anon., PVP: Polyvinylpyrrolidone, Technical Bulletin 7583-033, General Aniline and Film Corp. (New York 1964.)

    Google Scholar 

  2. Anon., PVP: An Annotated Bibliography 1951 to 1966, Vol. I–III, General Aniline and Film Corp. (New York 1967.)

    Google Scholar 

  3. Barkin, S., H. P. Frank, andF. R. Eirich I.U.P.A.C. International Symposium on Macromolecular Chemistry (Milan/Turin 1954); published as supplement to: Ricerca Sci. 25A, 844 (1955).

  4. Siggia, S., J. Amer. Pharmaceut. Assoc., Sci Edn.44, 201 (1957).

    Google Scholar 

  5. Barkin, S. M., Dissertation, Polytechnic Institute of Brooklyn (New York 1957); publ. no. 22650, University Microfilms Inc. (Ann Arbor, Michigan 1966); see also Diss. Abstracts17, 1906 (1957).

    Google Scholar 

  6. Saito, S., J. Colloid Sci.15, 283 (1960).

    Google Scholar 

  7. Saito, S., J. Coll. Interface Sci.24, 227 (1967).

    Google Scholar 

  8. Saito, S., Kolloid-Z. u. Z. Polymere215, 16 (1967).

    Google Scholar 

  9. Saito., S. andM. Yukawa, J. Coll. Interface Sci.30, 211 (1969).

    Google Scholar 

  10. Saito, S., J. Polymer Sci. Part A-18, 263 (1970).

    Google Scholar 

  11. Lange, H., Kolloid-Z. u. Z. Polymere243, 101 (1971).

    Google Scholar 

  12. Molyneux, P. andH. P. Frank, J. Amer. Chem. Soc.83, 3169 (1961).

    Google Scholar 

  13. Molyneux, P. andH. P. Frank, J. Amer. Chem. Soc.83, 3175 (1961).

    Google Scholar 

  14. Molyneux, P. andH. P. Frank, J. Amer. Chem. Soc.86, 4753 (1964).

    Google Scholar 

  15. Higuchi, T. andR. Kuramoto, J. Amer. Pharmaceut. Assoc., Sci. Edn.43, 393 and 398 (1954).

    Google Scholar 

  16. Guttmann, D. andT. Higuchi, J. Amer. Pharmaceut. Assoc., Sci. Edn.45, 659 (1956).

    Google Scholar 

  17. Miyawaki, G. M., N. K. Patel, andH. B. Kostenbauder, J. Amer. Pharmaceut. Assoc., Sci. Edn.48, 315 (1959).

    Google Scholar 

  18. Bahal, C. K. andH. B. Kostenbauder, J. Pharm. Sci.53, 1027 (1964).

    PubMed  Google Scholar 

  19. Scholtan, W., Makromol. Chemie11, 131 (1953).

    Google Scholar 

  20. Oster, G., J. Polymer Sci.16, 235 (1955).

    Google Scholar 

  21. Frank, H. P., S. Barkin, andF. R. Eirich, J. Phys. Chem.61, 1375 (1957).

    Google Scholar 

  22. Eliassaf, J., F. Eriksson, andF. R. Eirich, J. Polymer Sci.47, 193 (1960).

    Google Scholar 

  23. Sébille, B. andJ. Néel, J. Chim. Phys.60. 475 (1963).

    Google Scholar 

  24. Phares, R. E., J. Pharm. Sci.57, 53 (1968).

    PubMed  Google Scholar 

  25. Polli, G. P. andB. M. Frost, J. Pharm. Sci.58, 1543 (1969).

    PubMed  Google Scholar 

  26. Deluca, P. P. andH. B. Kostenbauder, J. Amer. Pharmaceut. Assoc., Sci. Edn.49, 430 (1960).

    Google Scholar 

  27. Kliman, A., Anesthesiology27, 417 (1966).

    PubMed  Google Scholar 

  28. Klotz, I. M. andV. H. Stryker, J. Amer. Chem. Soc.82, 5169 (1960).

    Google Scholar 

  29. Klotz, I. M., E. C. Stellwagen, andV. H. Stryker, Biochem. Biophys. Acta86, 122 (1964).

    PubMed  Google Scholar 

  30. Jirgensons, B., Makromol. Chemie6, 30 (1951).

    Google Scholar 

  31. Molyneux, P., Monograph No. 24, Society of Chemical Industry (London), p. 91 (1966).

    Google Scholar 

  32. Molyneux, P., Synthetic Polymersin Water: A Comprehensive Treatise (ed.Franks, F.), vol. IV, ch. 7 (London and New York) (in press).

  33. Kauzmann, W., Adv. Protein Chem.14, 1 (1959).

    PubMed  Google Scholar 

  34. Némethy, C. andH. A. Scheraga, J. Chem. Phys.36, 3382 and 3401 (1962); J. Phys. Chem.66, 1773 (1962).

    Google Scholar 

  35. Davies, M., Some Electrical and Optical Aspects of Molecular Behaviour (Oxford 1965).

  36. Frank, H. P., J. Colloid Sci.12, 480 (1957).

    Google Scholar 

  37. Elworthy, P. H., J. Pharm. Pharmacol.11, 624 (1959).

    PubMed  Google Scholar 

  38. Fuoss, R. M. andD. Edelson, J. Amer. Chem. Soc.73, 269 (1951).

    Google Scholar 

  39. Onions, C. T. (ed.), The Shorter Oxford English Dictionary, vol. I, p. 199 (Oxford 1965).

  40. Jolly, S. C. (ed.), British Pharmaceutical Codex 1968 (London) (a) p. 235, (b) p. 366.

  41. Morawetz, H. andA. Y. Kandanian, J. Phys. Chem.70, 2995 (1966).

    Google Scholar 

  42. Rao, C. N. R., Chemical Applications of Infrared Spectroscopy (New York and London 1963).

  43. Mitchell, J., Encyclopedia of Industrial Chemical Analysis (ed.Snell, F. D. andC. L. Hilton), vol.1, p. 142 (New York 1966).

  44. Lysyj, I. andJ. E. Zarembo, Anal. Chem.30, 428 (1958).

    Google Scholar 

  45. Lysyj, I. andJ. E. Zarembo, Microchem. J.3, 173 (1959).

    Google Scholar 

  46. Vogel, A. I., A Textbook of Quantitative Inorganic Analysis, 3rd edn, p. 807 (London 1962).

  47. Bauer, N. andS. Z. Lewin, Technique of Organic Chemistry (ed.Weissberger, A.), vol. I, 3rd edn, part II, p. 1259 (New York and London 1960).

  48. Kruis, A., Z. Physik. Chemie B34, 13 (1936).

    Google Scholar 

  49. Brown, C. A. andF. W. Zerban, Physical and Chemical Methods of Sugar Analysis, 3rd edn (New York 1941).

  50. Patel, N. K. andN. E. Foss, J. Pharm. Sci.53, 94 (1964) and54, 1495 (1965).

    PubMed  Google Scholar 

  51. Ahmed, G. S., Ph. D. thesis, University of London (1969).

  52. McBain, M. E. L. andE. Hutchinson, Solubilisation and Related Phenomena, p. 34 (New York 1955).

  53. Shinoda, K., T. Nakagawa, B. Tamamushi, andT. Isemura, Colloidal Surfactants, p. 12 (New York 1963).

  54. Partington, J. R., An Advanced Treatise on Physical Chemistry, vol. IV, p. 75 (London 1953).

    Google Scholar 

  55. Fuoss, R. M. andV. F. H. Chu, J. Amer. Chem. Soc.73, 949 (1951).

    Google Scholar 

  56. Elworthy, P. H., J. Pharm. Pharmacol.15, 137 T (1963).

    Google Scholar 

  57. Elworthy, P. H., J. Pharm. Pharmacol.16, 375 (1964).

    PubMed  Google Scholar 

  58. Molyneux, P., C. T. Rhodes, andJ. Swarbrick, Trans. Faraday Soc.61, 1043 (1965).

    Google Scholar 

  59. Elworthy, P. H., J. Pharm. Pharmacol.11, 557 (1959).

    PubMed  Google Scholar 

  60. Weast, R. C. (ed.), Handbook of Chemistry and Physics, 51st edn, section C (Cleveland, Ohio, 1970 to 1971).

  61. Florence, A. T., J. Pharm. Pharmacol.19, 384 (1966).

    Google Scholar 

  62. Lowe, B. M. andH. M. Rendall, Trans. Faraday Soc.67, 2318 (1971).

    Google Scholar 

  63. Ref. (51), p. 32.

  64. Ref. (52), p. 11.

  65. Graham, W. D., J. Pharm. Pharmacol.9, 230 (1957).

    PubMed  Google Scholar 

  66. Elias, H.-G., Kunststoffe/Plastics4, 1 (1961).

    Google Scholar 

  67. Fischer, E., J. Chem. Soc. 1382 (1955).

  68. Lee, C. M. andW. D. Kumler, J. Amer. Chem. Soc.83, 4593 (1961).

    Google Scholar 

  69. McGlashan, M. L., Physiochemical Quantities and Units, 2nd edn, p. 87 (London 1971).

  70. Sutton, L. E. (ed.), Tables of Interatomic Distances and Configuration in Molecules and Ions, Chemical Society (London) Special Publications No. 11 (1958) and No. 18 (Supplement) (1965).

  71. Ref. (69), p. M 108 s.

  72. Ref. (59), p. F-170.

  73. Nightingale, E. R., J. Phys. Chem.63, 1381 (1959).

    Google Scholar 

  74. Truter, M. R., Acta Cryst.11, 680 (1958).

    Google Scholar 

  75. Elworthy, P. H., J. Chem. Soc., 388 (1963).

  76. Rumpf, P., Bull. Soc. Chim. France5, 871 (1938).

    Google Scholar 

  77. Edsall, J. T. andJ. Wyman, Biophysical Chemistry, vol. I, p. 457 (New York 1958).

    Google Scholar 

  78. Ref. (76), p. 367.

    Google Scholar 

  79. Price, C. C. andS. Oae, Sulphur Bonding (New York 1962).

  80. Bell, R. P., The Proton in Chemistry, ch. 7 (London 1959).

  81. Nightingale, E. R., J. Phys. Chem.66, 894 (1962).

    Google Scholar 

  82. Lazier, W. A., U.S.P. 2,094,611 (1937); see also Chemical Abstracts31, 8544 (1937).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molyneux, P., Ahmed, G.S. The interaction of water-soluble α, ω-disubstituted alkanes (bolaform compounds) with polyvinylpyrrolidone in aqueous solution. Kolloid-Z.u.Z.Polymere 251, 310–328 (1973). https://doi.org/10.1007/BF01498730

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01498730

Keywords

Navigation