Skip to main content
Log in

Nonequilibrium thermodynamics and rheology of viscoelastic polymer media

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

Nonlinear constitutive equations for viscoelastic polymer media have been derived with the help of irreversible thermodynamical methods. These equations contain a small number of constants which have obvious physical meaning. The work is based on the hypothesis that the high-elasticity state characterized by large elastic strains is the local equilibrium thermodynamical state of these media. A theoretical description is given to explain the kinetic transition of fluid polymer media into high-elasticity state at temperatures above the flow temperature.

Zusammenfassung

Mit Hilfe der Methoden der Thermodynamik irreversibler Prozesse werden nichtlineare rheologische Stoffgleichungen für viskoelastische Polymere abgeleitet. Diese Gleichungen enthalten nur wenige Konstanten, die eine klare physikalische Bedeutung haben. Die Untersuchung ist auf die Hypothese gegründet, daß der hochelastische Zustand, der durch große elastische Dehnungen gekennzeichnet ist, der Zustand des lokalen thermodynamischen Gleichgewichts dieser Stoffe ist. Es wird eine theoretische Erklärung des kinetischen Übergangs von flüssigen Polymeren in den hochelastischen Zustand bei Temperaturen oberhalb der Fließtemperatur gegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a, ε, h, c :

Eulerian tensors of finite strains

a i , ε i ,h i ,c i :

their principal values

e :

strain rate tensor

ω :

vortex tensor

σ :

stress tensor

a :

Jaumann tensor derivative of tensora with respect to time

H, H e :

equilibrium thermodynamical flux

I 1,I 2,I 3 :

basis invariants of tensorC

ρ, ρ 0 :

density

T :

temperature

S :

specific entropy

f :

specific free energy

W :

elastic potential

q :

heat flux vector

P s :

production of entropy

D :

dissipation

p :

pressure

v :

speed vector

σ p ,e p :

nonequilibrium tensors of stress and strain respectively

σ e ,H e :

equilibrium tensors of stress and strain respectively

M (k) ijαβ :

kinetic coefficients

x :

heat conductivity tensor

r :

thermal resistance tensor

r ,r :

its principal values

r 0 :

coefficient of thermal resistance in isotropic case

R 1,R 2 :

constitutive scalars of tensorr

c σ :

heat capacity

A :

thermal equivalent of work

C 1,C 2 :

constitutive scalars of tensore p in Maxwellian case

λ :

scalar coefficient of viscosity

W s :

symmetric elastic potential

µ :

modulus of high-elasticity

M c :

molecular weight of polymer chain between crosslinks

M * :

molecular weight of segment

β :

M */M c

θ 0,θ r :

relaxation and retardation times respectively

s :

θ r /θ 0

η 0 :

maximum Newtonian viscosity

α :

dimensionless parameter of elastic potential

T f ,T g :

flow temperature and glass transition temperature

Δf *,ΔS *,ΔU * :

free energy, entropy and internal energy of activation

R :

gas constant

l, l 0 :

characteristic lengths of segments in the presence and absence of a field respectively

L 0,L 1,,L N :

characteristic sizes of molecular network

θ 0,θ 1,⋯, θ N :

characteristic relaxation times

References

  1. Gorodtsov, V. A. andA. I. Leonov Prikladnaya matem. i mekh32, 71 (1968).

    Google Scholar 

  2. Gorodtsov, V. A. andA. I. Leonov Mekh. polimerov6, 1087 (1969).

    Google Scholar 

  3. Leonov, A. I. On the description of the rheological behaviour of viscoelastic media under large elastic strains. Preprint No. 34, Institute of Mechanical Problems, AN SSSR (Moscow 1973).

    Google Scholar 

  4. Sedov, L. I., Introduction to Mechanics of Continuous Media (Moscow 1962).

  5. Murnaghan, F. D. Amer. Journ. of Mathem.59, 235 (1937).

    Google Scholar 

  6. Truesdell, C. Journ. Rat. Mech. Anal.1, 125 (1952).

    Google Scholar 

  7. Treloar, L., Physics of Rubber Elasticity (Oxford 1958).

  8. Grin, A. andJ. Adkins, Large elastic deformations and nonlinear continuum mechanics (Oxford 1960).

  9. Kluitenberg, G. A., Physica28 (1962).

  10. De Groot, S. R. andP. Mazur, Non-equilibrium Thermodynamics (Amsterdam 1962).

  11. Kluitenberg, G. A., Physica30 (1964).

  12. Novichenok, L. N. andZ. P. Shul'man, Thermophysical properties of polymers (Minsk 1971).

  13. Ziegler, M., Some Extremum Principles in Irreversible Thermodynamics with Application to Continuum Mechanics (Amsterdam 1963).

  14. Malkin, A. Ya., V. V. Volocevich andG. V. Vinogradov Preprints of International Symposium on Artificial Fibres, Kalinin, vol. 1, pp. 196–200 (1974).

    Google Scholar 

  15. Vinogradov, G. V., A. Ya. Malkin et al., Vysokomolek. soed.14a, 2425 (1972).

    Google Scholar 

  16. Kargin, V. A. andG. L. Slonimskiy, Short Essays on the Physical Chemistry of Polymers (Moscow 1967).

  17. Frenkel, Ya. I. Kinetic Theory of Liquids, AN SSSR (Moscow-Leningrad 1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonov, A.I. Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol Acta 15, 85–98 (1976). https://doi.org/10.1007/BF01517499

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01517499

Keywords

Navigation