Skip to main content
Log in

Self-similarity of damage cumulation

  • Scientific-Technical Section
  • Published:
Strength of Materials Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. G. I. Barenblatt and L. R. Botvina, “A note concerning power-type constitutive equations of deformation and fracture of solids,” Int. Eng. Sci.,20, No. 2, 187–191 (1982).

    Google Scholar 

  2. G. I. Barenblatt and L. R. Botvina, “Application of the similarity methods to damage cumulation and fatigue crack growth studies,” in: Defects and Fracture: Proceedings of the 1st International Symposium Def. and Fract., Tuczno, October, 1980, G. C. Sih et al. (eds.) (1982), pp. 71–79.

  3. G. I. Barenblatt and L. R. Botvina, “Self-similarity of fatigue failure: damage cumulation,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4, 161–165 (1983).

    Google Scholar 

  4. G. I. Barenblatt, Similarity, Self-Similarity, Intermediate Asymptotic Behavior [in Russian], Gidrometeoizdat, Leningrad (1982).

    Google Scholar 

  5. G. Goodyear, “The mathematical theory of equilibrium cracks,” in: Fracture [Russian translation], G. Libovits (ed.), Vol. 2, Mir, Moscow (1975), pp. 13–83.

    Google Scholar 

  6. G. I. Barenblatt and L. R. Botvina, “Incomplete self-similarity of fatigue in the linear range of crack growth,” Fatigue Eng. Mater. Struct.,3, 193–202 (1981).

    Google Scholar 

  7. D. Hull and D. E. Rimmer, “The growth of grain-boundary voids under stress,” Philos. Mag.,4, No. 42, 673–687 (1959).

    Google Scholar 

  8. I. W. Chen, “Mechanisms of cavity growth in creep,” Scr. Met.,17, No. 1, 17–22 (1983).

    Google Scholar 

  9. B. J. Cane and G. W. Greenwood, “The nucleation and growth of cavities in iron during deformation at elevated temperatures,” Met. Sci.,9, No. 2, 55–60 (1975).

    Google Scholar 

  10. I. W. Chen and A. S. Argon, “Creep cavitation in 304 stainless, steel,” Acta Met.,29, No. 7, 1321–1334 (1981).

    Google Scholar 

  11. T. J. Chuang and J. R. Rice, “The shape of intergranular creep cracks growing by surface diffusion,” Acta Met.,21, No. 12, 1625–1628 (1973).

    Google Scholar 

  12. H. E. Evans, “The growth of creep cavities by grain boundary sliding,” Philos. Mag.,23, No. 185, 1101 (1971).

    Google Scholar 

  13. R. W. Davis and K. R. Williams, “Strain-induced cavity development during creep,” Met. Sci. J.3, No. 3, March, 48–50 (1969).

    Google Scholar 

  14. G. M. Edward and M. F. Ashby, “Intergranular fracture during power-law creep,” Acta Met.,27, No. 9, 1505 (1979).

    Google Scholar 

  15. A. Needleman and J. R. Rice, “Overview: No. 9: Plastic creep-law effects in the diffusive cavitation of grain boundaries,” Acta Met.,28, No. 10, 1315–1332 (1980).

    Google Scholar 

  16. N. G. Needham and T. Gladman, “Nucleation, and growth of creep cavities in a type 347 steel,” Met. Sci.,14, No. 2, 64–72 (1980).

    Google Scholar 

  17. J. L. Lebowitz, J. Marro, and M. H. Kalos, “Dynamical scaling of structure function in quenched binary alloys,” Acta Met.,30, No. 1, 297–311 (1982).

    Google Scholar 

  18. E. W. Hart and H. D. Solomon, “Load relaxation studies of polycrystalline high purity aluminium,” Acta Met.,21, No. 3, 295–307 (1973).

    Google Scholar 

  19. M. J. Stowell, “Failure of superplastic alloys,” Met. Sci.,17, No. 1, 1–11 (1983).

    Google Scholar 

  20. D. W. Liversey and N. Ridley, “Cavitation and cavity sintering during compressive deformation of a superplastic microduplex Cu−Zn−Ni alloy,” Met. Sci.,16, No. 12, 563–569 (1982).

    Google Scholar 

  21. L. R. Botvina, I. S. Kogan, and L. V. Limar', “Growth of small fatigue cracks in notched specimens,” Fiz. Khim. Mekh. Mater.,20, No. 1, 77–80 (1984).

    Google Scholar 

  22. V. T. Troshchenko and V. I. Dragan, “Investigation of the regularities, of inelastic deformation and fatigue failure of metals under torsion,” Probl. Prochn., No. 5, 3–10 (1982).

    Google Scholar 

  23. A. V. Gur'ev and E. P. Bogdanov, “Microstructural peculiarities of the nucleation and growth of microcracks under cyclic load,” in: Abstract of Papers of the Righth All-Union Conference on Metal Fatigue, Institut Metallurgii im. A. A. Baikova Akad. Nauk SSSR, Moscow (1982), pp. 51–55.

  24. M. I. de Vries, G. L. Tjoa, and J. D. Elen, “Effects of neutron irradiation on low-cycle fatigue and tensile properties of AISI type 304 stainless steel at 298°K,” Fatigue Eng. Mater. Struct.,1, No. 2, 159–171 (1979).

    Google Scholar 

  25. S. Kocanda, Fatigue Failure of Metals [Russian translation], Metallurgiya, Moscow (1976).

    Google Scholar 

  26. A. S. Cheng and C. Laird, “Fatigue life behaviour of copper single crystals. Pt, I. Observation of crack nucleation,” Fatigue Eng. Mater. Struct.,4, No. 4, 331–341 (1981).

    Google Scholar 

  27. H. Mughrabi, “The cyclic, hardening and saturation behaviour of copper single crystals,” Mater. Sci. Eng.,33, 207–223 (1978).

    Google Scholar 

  28. A. S. Cheng and C. Laird, “Fatigue life behaviour of copper single crystals. Part II: Model for crack nucleation in persistent slip bands,” Fatigue Eng. Mater. Struct.,4, No. 4, 343–353 (1981).

    Google Scholar 

  29. R. Page and J. R. Weertman, “Investigation, of fatigue-induced grain boundary cavitation by small angle neutron scattering,” Scr. Met.,14, No. 7, 773–777 (1980).

    Google Scholar 

  30. V. R. Regel', A. I. Slutsker, and É. E. Tomashevskii, The Kinetic Nature of the Strength of Solids [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  31. I. A. Oding and Yu. P. Liberov, “Cumulation of defects and nucleation of submicrocracks in static tension of Armco iron,” Izv. Akad. Nauk SSSR, Ser. Metall. Gornoe Delo, No. 1, 113–119 (1964).

    Google Scholar 

  32. V. S. Ivanova and V. A. Ermishkin, Strength and Ductility of High Melting Metals and Single Crystals [in Russian], Metallurgiya, Moscow (1976).

    Google Scholar 

  33. L. M. Rybakova, M. E. Blanter, and B. A. Prusakova, “Destruction of metals in plastic deformation,” in: Abstracts of Papers of the 10th All-Union Conference on the Physics of the Strength of Metals, Kuibyshev (1983), pp. 320–321.

  34. H. Neuhauser, J. Koropp, and R. Heege, “Electron, microscopic studies in the yield region of 70/30-α-brass single crystals. 1. The mode of slip,” Acta Met.,23, No. 4, 441–453 (1975).

    Google Scholar 

  35. V. N. Nikolaevskii, “The earth's crust, dilatation, and earthquakes,” in: The Mechanics of the Earthquake Focus. Series Mechanics [Russian translation], Mir, Moscow (1982), pp. 133–215.

    Google Scholar 

Download references

Authors

Additional information

Moscow. Translated from Problemy Prochnosti, No. 12, pp. 17–24, December, 1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botvina, L.R., Barenblatt, G.I. Self-similarity of damage cumulation. Strength Mater 17, 1653–1663 (1985). https://doi.org/10.1007/BF01523001

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01523001

Keywords

Navigation