Skip to main content
Log in

Dynamic X-ray diffraction technique for measuring rheo-optical properties of crystalline polymeric materials

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

A dynamic X-ray diffraction technique, which can follow the responses of polymer crystals (crystallization, orientation, and lattice deformation) to mechanical excitation of sinusoidal strain induced to bulk specimen, was described. The descriptions for such responses are qualitatively made by using a narrow sector technique, which can measure the X-ray diffraction intensity distribution at a particular phase angle of the sinusoidal strain as a function of static and dynamic strains, temperature, and angular frequency. A typical result is demonstrated in terms of the investigation of orientation crystallization phenomena of natural rubber vulcanizates.

More quantitative descriptions can be made by using a half-circle sector technique, which can measure the in-phase and out-of phase components of the dynamic X-ray diffraction intensity distribution. From these, one can obtain the dynamic strain-induced crystallization and orientation coefficients and the dynamic response of lattice deformation of specific crystal plane both as function of temperature and frequency.

After a brief survey of the principle of the half-circle sector technique, frequency dependence of the dynamic strain-induced crystallization coefficients of the (002) and (200) crystal planes of natural rubber vulcanizates is demonstrated in terms of the two frequency dispersion regions around 10−2 and 101 Hz at a room temperature. The former and latter dispersions must be correlated with the crystallization processes of the so-calledα- andγ-filaments, respectively.

In addition, frequency and temperature dispersions of the dynamic strain-induced orientation coefficient and the dynamic response of lattice deformation of the (110) crystal plane of polyethylene are demonstrated in relation to the so-calledα 1 andα 2 dispersions of dynamic mechanical modulus function of this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Stein, R. S. J. Polymer Sci.C15, 185 (1966).

    Google Scholar 

  2. Kawai, H., T. Ito, D. A. Keedy andR. S. Stein J. Polymer Sci.B2, 1075 (1964).

    Google Scholar 

  3. Kawaguchi, T., T. Ito, H. Kawai, D. A. Keedy andR. S. Stein Macromolecules1, 126 (1968).

    Google Scholar 

  4. Ito, T., T. Oda, H. Kawai, T. Kawaguchi, D. A. Keedy andR. S. Stein Rev. Sci. Instr.39, 1847 (1968).

    Google Scholar 

  5. Oda, T. andR. S. Stein J. Polymer Sci.B9, 543 (1971); J. Polymer Sci. A-2,10, 685 (1972).

    Google Scholar 

  6. Acken, M. F. andW. E. Singer Ind. Eng. Chem.24, 54 (1932).

    Google Scholar 

  7. Long, J. D. andW. E. Singer Ind. Eng. Chem.26, 543 (1934).

    Google Scholar 

  8. Dunning, D. J. andP. J. Pennells Rubber Chem. Technol.41, 1381 (1968).

    Google Scholar 

  9. Kawai, H., T. Oda, S. Tomita andI. Furuta Proc. 5th Intern. Cong. Rheology4, 51 (1970).

    Google Scholar 

  10. Nomura, S., H. Kawai, I. Kimura andM. Kagiyama J. Polymer Sci. A-2,8, 383 (1970).

    Google Scholar 

  11. Hiratsuka, H. andS. Suehiro, M. S. theses presented to the Department of Polymer Chemistry, Faculty of Engineering, Kyoto University, March 9 and 10, 1971.

  12. Hiratsuka, H., M. Hashiyama, S. Tomita andH. Kawai paper presented at the U.S.-Japan Joint Seminar on Polymer Solid State, Cleveland, Oct. 9, 1972; J. Macromolecular Sci.-Phys.,B8, 101 (1973).

    Google Scholar 

  13. Andrews, E. H. Proc. Royal Soc.A270, 232 (1963).

    Google Scholar 

  14. Andrews, E. H. Proc. Royal Soc.A277, 562 (1964).

    Google Scholar 

  15. Tanaka, A., E. P. Chang, B. Delf, I. Kimura andR. S. Stein Polym. Phys. Ed.11, 1891 (1973).

    Google Scholar 

  16. Leaderman, H. Elasticity and Creep Properties of Filamentous Materials, the Textile Foundation Inc., Washington, D.C., 1943;R. S. Marvin, E. R. Fitzgerald, andJ. D. Ferry, J. Appl. Phys.21, 197 (1950);F. Schwarzl andA. J. Staverman, J. Appl. Phys.23, 838 (1952).

    Google Scholar 

  17. Ferry, J. D. J. Amer. Chem. Soc.72, 3746 (1950).

    Google Scholar 

  18. Wilchinsky, Z. W. J. Appl. Phys.30, 792 (1959);31, 1969 (1960).

    Google Scholar 

  19. Kratky, O. Kolloid-Z.84, 149 (1938).

    Google Scholar 

  20. See, for example,P. H. Geil, Polymer Single Crystals (New York 1963).

  21. Hay, I. L. andA. Keller Kolloid-Z. u. Z. Polymere204, 43 (1965).

    Google Scholar 

  22. Kobayashi, K. andT. Nagasawa J. Polymer Sci.C15, 163 (1966).

    Google Scholar 

  23. Erhardt, P. andR. S. Stein J. Polymer Sci.B3, 553 (1965).

    Google Scholar 

  24. Erhardt, P. andR. S. Stein J. Appl. Polymer Sci., Applied Polymer Symposia5, 113 (1967).

    Google Scholar 

  25. Stein, R. S. Polymer Eng. Sci.9, 320 (1969).

    Google Scholar 

  26. Hashimoto, T., Static and Dynamic Light Scattering Study of Crystalline Polymer Films, Ph. D. Thesis, University of Massachusetts, 1970.

  27. Sasaguri, K., R. Yamada andR. S. Stein J. Appl. Phys.35, 3188 (1964).

    Google Scholar 

  28. van Aartsen, J. J. andR. S. Stein J. Polymer Sci. A-2,9, 295 (1971).

    Google Scholar 

  29. Oda, T., S. Nomura andH. Kawai J. Polymer Sci.A3, 1993 (1965);T. Oda, N. Sakaguchi, andH. Kawai, J. Polymer Sci.C15, 223 (1966).

    Google Scholar 

  30. Kawai, H. Proc. 5th Intern. Cong. Rheology1, 97 (1969).

    Google Scholar 

  31. Nomura, S., A. Asanuma, S. Suehiro andH. Kawai J. Polymer Sci. A-2,9, 1991 (1971).

    Google Scholar 

  32. Stein, R. S. Polymer Eng. and Sci.8, 259 (1968);9, 320 (1969).

    Google Scholar 

  33. Takayanagi, M. andT. Matsuo J. Macromol. Sci.-Phys.B1, 407 (1967).

    Google Scholar 

  34. Tuijnman, C. A. F. Polymer4, 259, 315 (1968).

    Google Scholar 

  35. Phillips, P. J., G.-L. Wilkes, B. W. Delf andR. S. Stein J. Polymer Sci. A-2,9, 499 (1971).

    Google Scholar 

  36. Suehiro, S., M. S. Thesis presented to the Department of Polymer Chemistry, Faculty of Engineering, Kyoto University, March 9, 1970;S. Suehiro, T. Ito, andH. Kawai, paper presented at the 18th Annual Symposium on Rheology, Japan, Odawara, Oct. 8, 1969.

  37. Kawai, H., T. Ito andS. Suehiro Mem. Fac. Eng., Kyoto Univ.32, 416 (1970).

    Google Scholar 

  38. Takayanagi, M. Proc. 4th Intern. Cong. Rheol.1, 161 (1965).

    Google Scholar 

  39. Takayanagi, M., S. Minami, K. Neki andA. Naggi J. Soc. Materials Sci. (Japan)14, 343 (1965).

    Google Scholar 

  40. McCrum, N. G. andE. L. Morris Proc. Roy Soc. (London)A292, 506 (1966).

    Google Scholar 

  41. Sinnott, K. M. J. Appl. Phys.37, 3385 (1966); J. Polymer Sci.C14, 141 (1966).

    Google Scholar 

  42. Takayanagi, M., Intern. Symposium on Macromolecular Chemistry, Tokyo and Kyoto, 1966 p. 555 (London 1967).

  43. Nakatani, M., K. Iijima, A. Suganuma andH. Kawai, J. Macromol. Sci.-Phys.B2, 55 (1968).

    Google Scholar 

  44. Iwayanagi, S., paper presented at the 2nd Kyoto Seminor on Polymers, Kyoto, 1968.

  45. Tajiri, K., Y. Fujii, M. Aida andH. Kawai J. Macromol. Sci.-Phys.B4, 1 (1970).

    Google Scholar 

  46. Hideshima, T. andM. Kakizaki paper presented at the U.S.-Japan Joint Seminar on Polymer Solid State, Cleveland, Oct. 11, 1972; J. Macromol. Sci.-Phys.,B8, 368 (1973).

    Google Scholar 

  47. Saito, N., K. Okano, S. Iwayanagi, andT. Hideshima, in:H. Ehrenreich, F. Seitz, andD. Turnbull (Eds.), Solid State Physics Vol. 14, p. 458 (New York 1963).

  48. Okano, K. J. Polymer Sci.C15, 95 (1966).

    Google Scholar 

  49. Hayakawa, R. andY. Wada Rept. Progr. Polymer Phys., Japan9, 193 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 26 figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, H. Dynamic X-ray diffraction technique for measuring rheo-optical properties of crystalline polymeric materials. Rheol Acta 14, 27–47 (1975). https://doi.org/10.1007/BF01527209

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01527209

Keywords

Navigation