Skip to main content
Log in

A geostatistical approach for areal rainfall statistics assessment

  • Originals
  • Published:
Stochastic Hydrology and Hydraulics Aims and scope Submit manuscript

Abstract

Areal rainfall statistics are more relevant in flood hydrology and water resources management than point rainfall statistics when it comes to help designing dams or hydraulic structures. This paper presents a geostatistically based method to derive the areal statistics from point statistics. Assuming that the distribution models of point rainfall and areal belong to the same class of models and that the rainfall process is stationary, it is shown how the parameters of the areal distribution model can directly be computed from the parameters of the point distribution models in case of a non stationary process, an approximation is derived that yielded good results when applied to a mountainous region in Southern France. The method also allows the computation of the areal reduction factors in a very general form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bastin, G.B.; Lorent, C.; Duque, M. 1984: Optimal estimation of the average rainfall and optimal selection of raingage locations. Water Resour. Res. 20, 463–470

    Google Scholar 

  • Brunet-Moret, Y.; Roche, M. 1966: Etude théorique et m ‘é’ thodologique del'abattement des pluies. Cah. ORSTOM, sér. hydrol. III

  • Chua, S.H.; Bras, R.L. 1982: Optimal estimators of mean areal precipitation in regions of Orographic influence. J. of Hydrology. 57, 23–48

    Google Scholar 

  • Creutin, J.D.; Obled, C. 1982: Objective analysis and mapping techniques for rainfall fields: an objective comparison. Water Reour. Res. 18, 413–431

    Google Scholar 

  • Delhomme, J.P.; Delfiner, P. 1973: Application du krigeage à l'optimisation d'une campagne pluviométrique en zone aride. Proc. Symp. on Design of water resources Projects with Inadequate Data, 2, 191–210, UNESCO, Madrid

    Google Scholar 

  • Desbordes, M. 1987: Contribution à l'analyse et à la modélisation des mécanismes hydrologiques en milieu urbain. Thesis. Universite des Sciences et Techniques du Languedoc. Montpellier, France

    Google Scholar 

  • Gandin, L.S. 1965: Objective analysis of meteorological fields. Leningrad, 1963. Translated from Russian by Israel Program for Scientific Translation. Jerusalem

    Google Scholar 

  • Guillot, P.; Duband, D. 1967: The gradex to compute extreme flood probability from the observation of rainfall. In: International Hydrology Symposium. 1, 506–515, Colorado State University, Fort Collins, Colorado

    Google Scholar 

  • Journel, A.; Huijbregts, Ch. 1978: Mining geostatistics. New York: Academic Press

    Google Scholar 

  • Journel, A. 1986: Geostatistics: Models and tools for the Earth Sciences. Math. Geol. 18, 93–117

    Google Scholar 

  • Laborde, J.P. 1984: Analyse des données et cartographie automatique en hydrologie. Eléments d'hydrologie lorraine. Thèse d'Etat. INPL. Nancy

    Google Scholar 

  • Laborde, J.P. 1986: Les pluies sur les petits bassins versants: une fonction aléatoire dont on peut estimer le variogramme. Hydrologie Constinentale 1, 3–13

    Google Scholar 

  • Lebel, T. 1984: Moyenne spatiale de la pluie sur un bassin versant: Estimation optimale, generation stochastique et gradex des valuers extremes. Thesis, Institut National Polytechnique de Grenoble, France

    Google Scholar 

  • Lebel, T.; Bastin, G. 1985: Variogram identification by the mean-square interpolation error method with application to hydrology fields. J. of Hydrology. 77, 31–56

    Google Scholar 

  • Matheron, G. 1972: Theorie des variables regionalisees. In: Traite d'informatique geologique. 306–378, Masson, Paris

    Google Scholar 

  • Ministere de l'Agriculture. 1980: Synthese nationale sur les crues des petite bassins versants.

  • Obled, Ch.; Lebel, T.; Slimani, M. 1986: Estimation, regionalization and spatial averaging of extreme rainfall at small time steps. 3rd International Conference On Statistical Climatology. Vienna. Austria

  • Rodriguez-Iturbe, I.; Mejia, J. 1974: The design of rainfall networks in time and space. Water Resour. Res. 10, 713–727

    Google Scholar 

  • Rodriguez-Iturbe, I.; Mejia, J. 1974: On the transformation of point rainfall to areal rainfall. Water Resour. Res. 10, 729–735

    Google Scholar 

  • Serra, J. 1967: Echantillonnage et estimation locale des phénomènes de transition mincés. Thesis, Institut de Recherche de la Sidérurgie, Nancy

    Google Scholar 

  • Slimani, M.; Lebel, T. 1986: Comparison of three methods of estimating rainfall frequency parameters according to the duration of accumulation. In: Singh, J.V.; Reidel, D. (eds.) Hydrologic frequency modeling; International symposium on flood frequency and risk analyses. D. Reidel Publishing Company, 277–291

  • U. S. Wather Bureau. 1958: Rainfall intensity-frequency regime, 2. Southeastern United States. Tech. Pap. 29 U.S. Department of Commerce, Washington D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebel, T., Laborde, J.P. A geostatistical approach for areal rainfall statistics assessment. Stochastic Hydrol Hydraul 2, 245–261 (1988). https://doi.org/10.1007/BF01544039

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01544039

Key words

Navigation