Skip to main content
Log in

Thermal contraction and extension in fibrous crystals of polyethylene

  • Original Contributions
  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Summary

Solution grown polyethylene shish-kebabs have a core, diameter 20–30 nm, which is highly superheatable. When a mat of shish-kebabs is heated to 132 °C the lamellar material melts, leaving birefringent fibres in an isotropic matrix as seen under the polarizing microscope. Microscopic observations reveal that these fibres, aggregates of many shish-kebabs, contract as they are melted and extend on subsequent recrystallization from the partially molten state as the temperature is lowered. This extension is completely reversible on temperature cycling. For fibres originally crystallized at below 96 °C this effect results in crimping on recrystallization and straightening from the crimped state on remelting. This is because these latter fibres are isolated from each other by the lamellar overgrowth and they buckle rather than extending the sample. Analogous reversible length changes and crimping effects were observed also in fibrous crystals produced from the melt.

The above observations allow certain conclusions to be reached as regards the nature of the shish-kebab fibres. Thus an estimate of the forces involved in the bucking indicates that the basic unit which buckles is less than 50 nm in diameter in agreement with the single shish-kebab core when this is directly observable. Similar buckling in the melt crystallized fibrous entities indicates a core of similar size, which is not so easily seen. Further, the observed shrinkage behaviour, together with the associated birefringence and calorimetric information collected in this study, can only be accounted for if melting is visualised as the formation of disordered amorphous regions which alternate with perfect crystal regions along the shish-kebab core. This leads to a model equivalent to a linked row of fringed micelles within a given fibre. The chain straightening of the amorphous sections on recrystallization would then be responsible for the fibre extension. It follows further that for the amorphous sections to form in the first instance there must be preexisting centres of imperfections along the fibre. A model of randomly distributed imperfections (visualised as interlocking chain loops) can account for the present observations in a quantitative manner with realistic predictions as regards the lengths of the undisturbed crystal regions.

Finally there is an obvious analogy with the crystallization of oriented polymer networks (e.g. stretched rubber) as regards the observed extension —contraction behaviour, providing a link between recent findings and long established experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pennings, A. J., A. M. Kiel, Kolloid Z. u. Z. Polymere205. 160 (1965).

    Google Scholar 

  2. Pennings, A. J., J. M. A. A. van der Mark, H. C. Booij, Kolloid Z. u. Z. Polymere236, 99 (1970).

    Google Scholar 

  3. Frank, F. C., A. Keller, M. R. Mackley, Polymer12, 467 (1971).

    Google Scholar 

  4. Pennings, A. J., in: Crystal Growth, Proc. Int. Conf. on Crystal Growth (Oxford 1966).

  5. Wunderlich, B., C. M. Cormier, A. Keller, M. J. Machin, J. Macromol. Sci.B1, 93 (1967).

    Google Scholar 

  6. Keller, A., F. M. Willmouth, J. Macromol. Sci.B6, 493 (1972).

    Google Scholar 

  7. Pennings, A. J., J. M. M. A. van der Mark, Rheol. Acta10, 174 (1974).

    Google Scholar 

  8. Huseby, T. W., H. E. Bair, Polymer Letters5, 265 (1967).

    Google Scholar 

  9. Rijke, A. M., L. Mandelkern, J. Polymer Sci. A28, 255 (1970).

    Google Scholar 

  10. Wikjord, A. G., R. St, John Manley, J. Macromol. Sci.B2, 501 (1968).

    Google Scholar 

  11. Grubb, D. T., J. A. Odell, A. Keller, J. Mater. Sci.10, 1510 (1975).

    Google Scholar 

  12. Czornyj, G., B. Wunderlich, Makromol. Chem.178, 843 (1977).

    Google Scholar 

  13. Zwijnenberg, A., A. J. Pennings, Colloid and Polymer Sci.254, 868 (1976).

    Google Scholar 

  14. Mackley, M. R. A. Keller, Polymer14, 16 (1973).

    Google Scholar 

  15. Cappaccio, G., I. M. Ward, Nature Phys. Sci.243, 143 (1973).

    Google Scholar 

  16. Cappaccio, G., I. M. Ward, Polymer15, 233 (1974).

    Google Scholar 

  17. Barham, P. J., A. Keller, J. Mater Sci.11, 27 (1976).

    Google Scholar 

  18. A. J. Pennings, C. J. H. Schouteten, A. M. Kiel, J. Polymer Sci.C, 38, 167 (1972).

    Google Scholar 

  19. Bunn, C. W., R. de P. Daubeny, Trans. Faraday Soc.59, 1173 (1954).

    Google Scholar 

  20. Diamant, J., A. Keller, E. Baer, M. Litt, R. G. C. Arridge, Proc. Roy. Soc. Lond.B180, 293 (1972).

    Google Scholar 

  21. Dale, W. C., E. Baer, J. Mater. Sci.9, 369 (1974).

    Google Scholar 

  22. Meyer, K. H., C. Ferri, Helv. Chim. Acta.18, 570 (1935).

    Google Scholar 

  23. Wood, L. A., F. C. Roth, J. Appl. Phys.15, 781 (1944).

    Google Scholar 

  24. Smith, W. H., C. P. Saylor, J. Nat. Bur. Stand.21, 257 (1938).

    Google Scholar 

  25. Tobolsky, A. V., G. M. Brown, J. Polymer Sci.17, 547 (1955).

    Google Scholar 

  26. Roberts, D. E., L. Mandelkern, J. Amer. Chem. Soc.80 1289, (1958).

    Google Scholar 

  27. Oth, J. F. M., P. J. Flory, J. Amer. Chem. Soc.80, 1297 (1958).

    Google Scholar 

  28. Mandelkern, L., D. E. Roberts, A. F. Diorio, A. S. Posner, J. Amer. Chem. Soc.81, 4148 (1959).

    Google Scholar 

  29. Flory, P. J., J. Chem. Phys.15, 397 (1947).

    Google Scholar 

  30. Flory, P. J., J. Amer. Chem. Soc.78, 5222 (1956).

    Google Scholar 

  31. Freund, E., F. Deutsch, Rayon Textile Monthly40, 280 (1940).

    Google Scholar 

  32. T. C. Majury, H. J. Wellard, Atti del Simposio Internationale di Chimica Macromolecolare (1954). Supplemento a La Ricerca Scientifica p. 354, (1955).

  33. Jeffries, R., H. J. Wellard, J. Textile Institute47 1549 (1956).

    Google Scholar 

  34. Girolamo, M., A. Keller, K. Miyasaka, N. Overbergh, J. Polymer Sci. Polym. Phys. Edn.14, 39 (1976).

    Google Scholar 

  35. Zachmann, H. G., Kolloid Z. u. Z. Polymere216-217, 180 (1967).

    Google Scholar 

  36. Zachmann, H. G., Kolloid Z. u. Z. Polymere231, 504 (1969).

    Google Scholar 

  37. M. R. Mackley, A. Keller, Phil. Trans. Roy. Soc.A 278, 29 (1975).

    Google Scholar 

  38. Nagasawa, T., K. Kobayashi, J. Appl. Phys.41, 4276 (1970).

    Google Scholar 

  39. Predecki, P., W. O., Statton, Appl. Polymer Symp.6., 165 (1967).

    Google Scholar 

  40. Discussion Remarks byJ. D. Hoffman.

  41. McHugh, A. J., E. H. Forrest, J. Macromol. Sci. Phys.B11, 219 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 12 figures and 1 table

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grubb, D.T., Keller, A. Thermal contraction and extension in fibrous crystals of polyethylene. Colloid & Polymer Sci 256, 218–233 (1978). https://doi.org/10.1007/BF01550552

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01550552

Keywords

Navigation