Skip to main content
Log in

A fast Legendre transform algorithm and applications to the adhesion model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A new algorithm for the computation of discrete Legendre transforms is discussed. Classical solutions have a running time proportional toN 2d, whereN is the size of the spatial grid andd is the space dimension. The new algorithm has a running timeO((N log2 N) d). A general application of this algorithm is to the weak solutions of hyperbolic systems of conservation laws as considered by Lax (1973,Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, S.I.A.M.). The potential of the method is illustrated on the “adhesion model,” a multi-dimensional version of the Burgers equation, used to study the formation of large-scale structures in cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, V. I. (1983).Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, Berlin.

    Google Scholar 

  • Aurell, E. (1992). Private communication.

  • Benzi, R., Paladin, G., Parisi, G., and Vulpiani, A. (1984) On the multifractal nature of fully developed turbulence and chaotic systems,J. Phys. A 17, 3521.

    Google Scholar 

  • Brachet, M., Meiron, D. I., Orszag, S. A., Nickel B. G., Morf, R. H., and Frisch, U. (1983). Small-scale structure of the Taylor-Green vortex,J. Fluid Mech. 130, 411.

    Google Scholar 

  • Brenier, Y. (1989). Un algorithme rapide pour le calcul de transformées de Legendre-Fenchel discrètes,C.R. Acad. Sci. Paris 308, 587–589.

    Google Scholar 

  • Burgers, J. M. (1929). On the application of statistical, mechanics to the theory of turbulent fluid motion,Proc. Roy. Neth. Acad. Soc. 32, 643.

    Google Scholar 

  • Burgers, J. M. (1974).The Nonlinear Diffusion Equation, D. Reidel Publ. Co.

  • Cole, J. D. (1951). On a quasi-linear parabolic equation occuring in aerodynamics,Quart. Appl. Math. 9, 225.

    Google Scholar 

  • Corrias, L. (1993). Fast Legendre-Fenchel transform and applications to Hamilton-Jacobi equation and conservation laws,SIAM J. Num. Anal., submitted.

  • Fournier, J. D., and Frisch, U. (1983). L'équation, de Burgers déterministe et statistique,J. de Méc. Théor. et Appl 2, 699.

    Google Scholar 

  • Gurbatov, S. N., and Saichev, A. I. (1984).Radiophys. Quant. Electr. 27, 4, 303;Izv. VUZ Radiofiz. (USSR)27, 456.

    Google Scholar 

  • Gurbatov, S., Malakhov, A., and Saichev, A. (1991).Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays, Particles, Manchester University Press.

  • Halsey, T. C., Jensen, M. H., Kadanoff, L. P. Procaccia, I., and Shraiman, B. (1986). Fractal measures and their singularities: the characterization of strange sets.Phys. Rev. A 33, 1141.

    Google Scholar 

  • Hopf, E. (1950). The partial differential equationu t +uu x =u xx ,Comm. Pure Appl. Mech. 3, 201.

    Google Scholar 

  • Kardar, M., Parisi, G., and Zhang, Y. C. (1986). Dynamical scaling of growing interfaces,Phys. Rev. Lett. 56, 889.

    Google Scholar 

  • Kida, S. (1979). Asymptotic properties of Burgers turbulence,J. Fluid Mech. 93, 337.

    Google Scholar 

  • Kuramoto, Y. (1985):Chemical Oscillations, Waves and Turbulence Springer-Verlag, Berlin.

    Google Scholar 

  • Lax, P. D. (1973).Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, S.I.A.M.

  • Musha, T., Kosugi, Y., Matsumoto, G., and Suzuki, M. (1981). Modulation of the time relation of action potential impulses propagating along an axon,IEEE Trans. Biomedical Eng. BME-28, 616–623.

    Google Scholar 

  • Parisi, G., and Frisch, U. (1985). In Ghil, M., Benzi, R., and Parisi, G. (eds.),Turbulence and Predictability in Geophysical Fluid Dynamics, p. 84, Proc. Int'l. School of Physics “E. Fermi,” Varenna, Italy, 1983.

  • Schwartz, M., and Edwards, S. F. (1992). Nonlinear deposition: a new approach,Europhys. Lett. 20, 301–305.

    Google Scholar 

  • Shandarin, S. F., and Zeldovich, Ya. B. (1989). The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium,Rev. Mod. Phys. 61, 185–220.

    Google Scholar 

  • She, Z. S., Aurell, E., and Frisch, U. (1992). The inviscid Burgers equation with initial data of Brownian type,Comm. Math. Phys. 148, 623.

    Google Scholar 

  • Sinai, Ya. G. (1992). Statistics of shock waves in solutions of Burger's equation in the limit of vanishing viscosity,Comm. Math. Phys. 148, 601.

    Google Scholar 

  • Vergassola, M., Dubrulle, B., Frisch, U., and Noullez, A. (1994). Burgers' equation, devil's staircases and the mass distribution for large-scale structures,Astron. & Astrophys. 289, 325–356.

    Google Scholar 

  • Zeldovich, Ya. B. (1970). Gravitational Instability: An approximate theory for large density perturbations,Astron. & Astrophys. 5, 84–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noullez, A., Vergassola, M. A fast Legendre transform algorithm and applications to the adhesion model. J Sci Comput 9, 259–281 (1994). https://doi.org/10.1007/BF01575032

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01575032

Key Words

Navigation