Skip to main content
Log in

Multivariate interpolation at arbitrary points made simple

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

The concrete method of ‘surface spline interpolation’ is closely connected with the classical problem of minimizing a Sobolev seminorm under interpolatory constraints; the intrinsic structure of surface splines is accordingly that of a multivariate extension of natural splines. The proper abstract setting is a Hilbert function space whose reproducing kernel involves no functions more complicated than logarithms and is easily coded. Convenient representation formulas are given, as also a practical multivariate extension of the Peano kernel theorem. Owing to the numerical stability of Cholesky factorization of positive definite symmetric matrices, the whole construction process of a surface spline can be described as a recursive algorithm, the data relative to the various interpolation points being exploited in sequence.

Résumé

La méthode concrète d'interpolation par surfaces-spline est étroitement liée au problème classique de la minimisation d'une semi-norme de Soboleff sous des contraintes d'interpolation; la structure intrinsèque des surfaces-spline est dès lors celle d'une extension multivariée des fonctions-spline naturelles. Le cadre abstrait adéquat est un espace fonctionnel hilbertien dont le noyau reproduisant ne fait pas intervenir de fonctions plus compliquées que des logarithmes et est aisé à programmer. Des formules commodes de représentation sont données, ainsi qu'une extension multivariée d'intérêt pratique du théorème du noyau de Peano. Grâce à la stabilité numérique de la factorisation de Cholesky des matrices symétriques définies positives, la construction d'une surface-spline peut se faire en exploitant point après point les données d'interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Ahlberg, E. N. Nilson, andJ. L. Walsh,The Theory of Splines and Their Applications, Academic Press Inc., New York (1967).

    Google Scholar 

  2. A. C. Aitken,Determinants and Matrices, Oliver and Boyd Ltd., Edinburgh (1956).

    Google Scholar 

  3. P. J. Davis,Interpolation and Approximation, Blaisdell Publ. Co., New York (1963).

    Google Scholar 

  4. C. de Boor andR. E. Lynch,On Splines and their Minimum Properties, J. Math. Mech.15, 953–969 (1966).

    Google Scholar 

  5. J. Duchon,Fonctions-spline à énergie invariante par rotation, Rapport de recherche no 27, Université de Grenoble (1976).

  6. J. Duchon,Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces, R.A.I.R.O. Analyse numérique10, 5–12 (1976).

    Google Scholar 

  7. J. Duchon, ‘Splines Minimizing Rotation—Invariant Semi-norms in Sobolev Spaces’, inConstructive Theory of Functions of Several Variables, Oberwolfach 1976, W. Schempp and K. Zeller, ed., pp. 85–100, Springer-Verlag, Berlin-Heidelberg (1977).

    Google Scholar 

  8. M. Golomb andH. F. Weinberger, ‘Optimal Approximation and Error Bounds’, inOn Numerical Approximation, R. E. Langer, ed., pp. 117–190, The University of Wisconsin Press, Madison (1959).

    Google Scholar 

  9. R. L. Harder andR. N. Desmarais,Interpolation Using Surface Splines, J. Aircraft9, 189–191 (1972).

    Google Scholar 

  10. J. Meinguet,Optimal Approximation and Error Bounds in Seminormed Spaces, Num. Math.10, 370–388 (1967).

    Google Scholar 

  11. J. Meinguet, ‘An Intrinsic Approach to Multivariate Spline Interpolation at Arbitrary Points’. To appear inProc. NATO Advanced Study Institute on Polynomial and Spline Approximation, Calgary 1978, B. N. Sahney, ed., 29 pp., D. Reidel Publ. Co., Dordrecht (1979).

    Google Scholar 

  12. H. S. Shapiro,Topics in Approximation Theory, Springer-Verlag, Berlin-Heidelberg (1971).

    Google Scholar 

  13. H. W. Turnbull,The Theory of Determinants, Matrices, and Invariants, Dover Publ., Inc., New York (1960).

    Google Scholar 

  14. B. Wendroff,Theoretical Numerical Analysis, Academic Press Inc., New York (1966).

    Google Scholar 

  15. J. H. Wilkinson andC. Reinsch,Linear Algebra, Springer-Verlag, Berlin-Heidelberg (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor E. Stiefel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meinguet, J. Multivariate interpolation at arbitrary points made simple. Journal of Applied Mathematics and Physics (ZAMP) 30, 292–304 (1979). https://doi.org/10.1007/BF01601941

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01601941

Keywords

Navigation