Skip to main content
Log in

Poly(U)-directed peptide-bond formation from the 2′(3′)-glycyl esters of adenosine derivatives

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The self-condensation of 2′(3′)-O-glycyl esters of adenosine, adenosine-5′-(O-methylphosphate) and P1, P2-diadenosine-5′-pyrophosphate in 6.2 mM solutions at pH 8.0 and -5°C in the presence of 12.5 mM poly(U) yields approximately 3 times as much diketopiperazine as reactions without poly(U). As the concentration of 2′(3′)-O-(glycyl)-P1, P2-diadenosine-5′-pyrophosphate is decreased from 6.2 mM to 1.5 mM the yield of diketopiperazine in the presence of poly(U) decreases slightly from 6.6% to 5.2%, whereas, in the absence of poly(U) the yield of diketopiperazine decreases substantially from 2.4% to 0.75%. The enhanced yield of diketopiperazine that is attributed to the template action of poly(U) is temperature dependent and is observed only at temperatures below 10°C (5°C to -5°C) for 6.2 mM 2′(3′)-O-(glycyl)-adenosine-5′-(O-methylphosphate) and below 23°C (15°C to -5°C) for 6.2 mM 2′(3′)-O-(glycyl)-P1, P2-diadenosine-5′-pyrophosphate. The absence of a template effect at high temperatures is attributed to the melting of the organized helices. The hydrolysis half-lives at pH 8.0 and -5°C of 2′(3′)-O-(glycyl)-adenosine, 2′(3′)-O-(glycyl)-adenosine-5′-(O-methylphosphate), 2′(3′)-O-(glycyl)-P1, P2-diadenosine-5′-pyrophosphate, and 5′-O-(glycyl)-adenosine in the presence of poly(U) are substantially larger than their half-lives in the absence of poly(U). The condensation of 2′(3′)-O-(glycyl)-adenosine yields 5% of 5′-O-(glycyl)-adenosine in the presence of poly(U) compared to 0.7% in the absence of poly(U).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DKP:

diketopiperazine

(gly)2 :

glycylglycine

(gly)3 :

glycylglycylglycine

AppA-gly:

2′(3′)-O-(glycyl)-P1, P2-diadenosine-5′-pyrophosphate

MepA-gly:

2′(3′)-O-(glycyl)-adenosine-5′-(O-methylphosphate)

Ado-2′(3′)-gly:

2′(3′)-O-(glycyl)-adenosine

Ado-5′-gly:

5′-O-(glycyl)-adenosine

Boc-gly:

N-tert-butyloxycarbonylglycine

AppA:

P1, P2-diadenosine-5′-pyrophosphate

MepA:

adenosine-5′-(O-methylphosphate)

AppA-Boc-gly:

2′(3′)-O-(Boc-glycyl)-P1, P2-diadenosine-5′-pyrophosphate

Ado-5′-Boc-gly:

5′-O-(Boc-glycyl)-adenosine

Ado-2′(3′)-Boc-gly:

2′(3′)-O-(Boc-glycyl)-adenosine

References

  • Arnott S, Bond PJ (1973) Nature (London) 244: 99–101

    Google Scholar 

  • Chung NM, Lohrmann R, Orgel LE (1971) Biochim Biophys Acta 228: 536–543

    Google Scholar 

  • Chung SK, Copsey DB, Scott AI (1978) Bioorg Chem 7: 303–312

    Google Scholar 

  • Coles N, Bukenberger MW, Meister A (1962) Biochemistry 1: 317–322

    Google Scholar 

  • Davies RJH, Davidson N (1971) Biopolymers 10: 1455–1479

    Google Scholar 

  • Goldstein L, Levin Y, Katchalski E (1964) Biochemistry 3: 1913–1919

    Google Scholar 

  • Hecht SM (1977) Tetrahedron 33: 1671–1696

    Google Scholar 

  • Hopfield JJ (1978) Proc Natl Acad Sci USA 75: 4334–4338

    Google Scholar 

  • Ito M, Hagiwara D, Kamiya T (1975) Tetrahedron Lett, 4393–4394

  • Lohrmann R, Orgel LE (1978) Tetrahedron 34: 853–855

    Google Scholar 

  • Novogrodsky A (1971) Biochim Biophys Acta 228: 688–692

    Google Scholar 

  • Pinck M, Schuber F (1971) Biochimie 53: 887–891

    Google Scholar 

  • Purdie JE, Benoiton, NL (1973) J Chem Soc, Perkin Trans 2: 1845–1852

    Google Scholar 

  • Schuber F, Pinck M (1974a) Biochimie 56: 383–390

    Google Scholar 

  • Schuber F, Pinck M (1974b) Biochimie 56: 391–395

    Google Scholar 

  • Schuber F, Pinck M (1974c) Biochimie 56: 397–403

    Google Scholar 

  • Strickland JE, Jacobson KB (1972) Biochemistry 11: 2321–2323

    Google Scholar 

  • Ts'o POP (1974) Bases, nucleosides, and nucleotides. In: Ts'o, POP (ed) Basic principles in nucleic acid chemistry. Academic Press, New York, vol 1, p 453

    Google Scholar 

  • Walder JA, Walder RY, Heller MJ, Freier SM, Letsinger RL, Klotz IM (1979). Proc Natl Acad Sci USA 76: 51–55

    Google Scholar 

  • Weber AL, Orgel LE (1978) T Mol Evol 11: 189–198

    Google Scholar 

  • Weber AL, Orgel LE (1979) T Mol Evol 13: 185–192

    Google Scholar 

  • Wolfenden R (1963) Biochemistry 2: 1090–1092

    Google Scholar 

  • Zachau HG, Feldmann H (1965) Amino acid esters of RNA, nucleosides, and related compounds. In: Davidson JN, Cohn WE (eds) Prog Nucleic Acid Res Mol Biol Academic Press, New York, vol 4, p 217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, A.L., Orgel, L.E. Poly(U)-directed peptide-bond formation from the 2′(3′)-glycyl esters of adenosine derivatives. J Mol Evol 16, 1–10 (1980). https://doi.org/10.1007/BF01732065

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732065

Key words

Navigation