Skip to main content
Log in

Optimization methods for truss geometry and topology design

  • Review Paper
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

Truss topology design for minimum external work (compliance) can be expressed in a number of equivalent potential or complementary energy problem formulations in terms of member forces, displacements and bar areas. Using duality principles and non-smooth analysis we show how displacements only as well as stresses only formulations can be obtained and discuss the implications these formulations have for the construction and implementation of efficient algorithms for large-scale truss topology design. The analysis covers min-max and weighted average multiple load designs with external as well as self-weight loads and extends to the topology design of reinforcement and the topology design of variable thickness sheets and sandwich plates. On the basis of topology design as an inner problem in a hierarchical procedure, the combined geometry and topology design of truss structures is also considered. Numerical results and illustrative examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achtziger, W. 1992: Truss topology design under multiple loadings.DFG-Report (FSP Applied Optimization and Control), No. 367, Universität Bayreuth, FRG

    Google Scholar 

  • Achtziger, W. 1993: Minimax compliance truss topology subject to multiple loadings. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 43–54. Dordrecht: Kluwer

    Google Scholar 

  • Achtziger, W.; Bendsøe, M.P.; Ben-Tal, A.; Zowe, J. 1992: Equivalent displacement based formulations for maximum strength truss topology design.IMPACT of Computing in Science and Engineering. 4, 315–345

    Google Scholar 

  • Allaire, G.; Kohn, R.V. 1993: Topology optimization and optimal shape design using homogenization. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 207–218. Dordrecht: Kluwer

    Google Scholar 

  • Ben-Tal, A.; Bendsøe, M.P. 1993: A new method for optimal truss topology design.SIAM J. Optimization,3, 322–358

    Google Scholar 

  • Ben-Tal, A.; Kocvara, M.; Zowe, J. 1993: Two non-smooth methods for simultaneous geometry and topology design of trusses. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 31–42. Dordrecht: Kluwer

    Google Scholar 

  • Ben-Tal, A.; Nemirovskii, A. 1992: Interior point polynomial-time methods for truss topology design.Research Report 3/92, Optimization Lab., Technion (Israel Inst. of Technology)

  • Ben-Tal, A.; Nemirovskii, A. 1993: An interior point algorithm for truss topology design. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 55–70. Dordrecht: Kluwer

    Google Scholar 

  • Ben-Tal, A.; Yuzefovich, I.; Zibulevsky, M. 1992b: Penalty/barrier multiplier methods for minmax and constrained smooth convex problems.Research Report 9/92, Optimization Lab., Technion (Israel Inst. of Technology)

  • Bendsøe, M.P.; Ben-Tal, A.; Haftka, R.T. 1991: New displacement-based methods for optimal truss topology design.Proc. AIAA/ASME/ASCE/AHS/ASC 32nd. Structures, Structural Dynamics and Materials Conference. (held in Baltimore, MD)

  • Bendsøe, M.P.; Guedes, J.M.; Haber, R.B.; Pedersen, P.; Taylor, J.E. 1992: An analytical model to predict optimal material properties in the context of optimal structural design.J. Appl. Mech. (to appear)

  • Bendsøe, M.P.; Kikuchi, N. 1988: Generating optimal topologies in structural design using a homogenization method.Comp. Meth. Appl. Mech. Engrg. 71, 197–224

    Google Scholar 

  • Bendsøe, M.P.; Mota Soares, C.A. (eds.) 1993:Topology optimization of structures. Dordrecht: Kluwer

    Google Scholar 

  • Cheng, G.; Jiang, Z. 1991: Study on topology optimization with stress constraints.Report No. 37, Inst. of Mech. Engrg., University of Aalborg, Denmark

    Google Scholar 

  • Demyanov, V.F.; Malozemov, V.N. 1974:Introduction to minimax. New York: John Wiley and Sons

    Google Scholar 

  • Diaz, A.; Belding, B. 1991: On optimum truss layout by a homogenization method.ASME Transactions of Mechanical Design. (to appear)

  • Diaz, A.; Bendsøe, M.P. 1992: Shape optimization of structures for multiple loading conditions using a homogenization method.Struct. Optim. 4, 17–22

    Google Scholar 

  • Dorn, W.; Gomory, R.; Greenberg, M. 1964: Automatic design of optimal structures.J. de Mecanique. 3, 25–52

    Google Scholar 

  • Fleron, P. 1964: The minimum weight of trusses.Bygnings statiske Meddelelser 35, 81–96

    Google Scholar 

  • Fleury, C. 1993: Discrete valued optimal design problems. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 81–88. Dordrecht: Kluwer

    Google Scholar 

  • Grierson, D.E.; Pak, W.H. 1993: Discrete optimal design using a genetic algorithm. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 89–102. Dordrecht: Kluwer

    Google Scholar 

  • Hajela, P.; Lee, E.; Lin, C.Y. 1993: Genetic algorithms in structural topology optimization. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 117–134. Dordrecht: Kluwer

    Google Scholar 

  • Hemp, W.S. 1973:Optimum structures. Oxford: Clarendon Press

    Google Scholar 

  • Jog, C.; Haber, R.B. Bendsøe, M.P. 1994: Topology design with optimized, self-adaptive materials.Int. J. Num. Meth. Engng. (in press)

  • Kirsch, U. 1989: Optimal topologies of structures.Appl. Mech. Rev. 42, 223–239

    Google Scholar 

  • Kirsch, U. 1993: Fundamental properties of optimal topologies. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 3–18. Dordrecht: Kluwer

    Google Scholar 

  • Kocvara, M.; Zowe, J. 1991: Codes for truss topology design: a numerical comparison. Preprint, Universität Bayreuth

  • Lewinski, T.; Zhou, M.; Rozvany, G.I.N. 1993: Exact least-weight truss layouts for rectangular domains with various support conditions.Struct. Optim. 6, 65–67

    Google Scholar 

  • Lewinski, T.; Zhou, M.; Rozvany, G.I.N. 1994: Extended exact solutions for least-weight truss layouts — Part I: cantilever with a horizontal axis of symmetry. Part II: unsymmetric cantilevers.Int. J. Mech. Sci. (proofs returned)

  • Michell, A.G.M. 1904: The limits of economy of material in frame structures.Phil. Mag. 8, 589–597

    Google Scholar 

  • Nakamura, T.; Ohsaki, M. 1992: A natural generator of optimum topology of plane trusses for specified fundamental frequency.Comp. Meth. Appl. Mech. Engrg. 94, 113–129

    Google Scholar 

  • Olhoff, N.; Taylor, J.E. 1983: On structural optimization.J. Appl. Mech. 50, 1134–1151

    Google Scholar 

  • Pedersen, P. 1970: On the minimum mass layout of trusses.AGARD-CP-36-70

  • Pedersen, P. 1972: On the optimal layout of multi-purpose trusses.Comp. Struct. 2, 695–712

    Google Scholar 

  • Pedersen, P. 1973: Optimal joint positions for space trusses.ASCE J. 99, 2459–2476

    Google Scholar 

  • Pedersen, P. 1993: Topology optimization of three dimensional trusses. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 19–30. Dordrecht: Kluwer

    Google Scholar 

  • Ringertz, U. 1985: On topology optimization of trusses.Engrg. Optim. 9, 21–36

    Google Scholar 

  • Ringertz, U. 1986: A branch and bound algorithm for topology optimization of truss structures.Engrg. Optim. 10, 111–124

    Google Scholar 

  • Ringertz, U. 1988: A mathematical programming approach to structural optimization.Research Report No. 88-24, Department of Leightweight Structures, The Royal Institute of Technology, Stockholm

    Google Scholar 

  • Ringertz, U. 1992: On finding the optimal distribution of material properties.Struct. Optim. 5, 265–267

    Google Scholar 

  • Rossow, M.P.; Taylor, J.E. 1973: A finite element method for the optimal design of variable thickness sheets.AIAA J. 11, 1566–1569

    Google Scholar 

  • Rozvany, G.I.N. 1976:Optimal design of flexural systems. Oxford: Pergamon

    Google Scholar 

  • Rozvany, G.I.N. 1989:Structural design via optimality criteria. Dordrecht: Kluwer

    Google Scholar 

  • Rozvany, G.I.N. (ed.) 1992: Shape and lay-out optimization in structural design.CISM Lecture Notes No. 325. Vienna: Springer

    Google Scholar 

  • Rozvany, G.I.N. 1993: Lay-out theory for grid-type structures. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 251–272. Dordrecht: Kluwer

    Google Scholar 

  • Saka, M.P. 1980: Shape optimization of trusses.ACSE J. Struct. Engrg. 106, 1155–1174

    Google Scholar 

  • Sankaranaryanan, S.; Haftka, R.; Kapania, R.K. 1993: Truss topology optimization with stress and displacement constraints. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 71–78. Dordrecht: Kluwer

    Google Scholar 

  • Schramm, H.; Zowe, J. 1992: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results.SIAM J. Optim. 1, 121–152

    Google Scholar 

  • Suzuki, K.; Kikuchi, N. 1991: Shape and topology optimization for generalized layout problems using the homogenization method.Comp. Meth. Appl. Mech. Engrg. 93, 291–318

    Google Scholar 

  • Svanberg, K. 1984: On local and global minima in structural optimization. In Atrek, A.; Gallagher, R.H.; Ragsdell, K.M.; Zienkiewicz, O.C. (eds.)New directions in optimum structural design, pp. 327–341. New York: Wiley

    Google Scholar 

  • Svanberg, K. 1992a: On the global convergence of a modified stress ratio method for stress-constrained truss sizing and topology optimization. Preprint, Dept. of Optimization and Systems Theory, The Royal Institute of Technology, Stockholm

    Google Scholar 

  • Svanberg, K. 1992b: On the global convergence of a modified optimality criteria method for compliance- constrained truss sizing and topology optimization. Preprint, Dept. of Optimization and Systems Theory, The Royal Institute of Technology, Stockholm

    Google Scholar 

  • Taylor, J.E. 1969: Maximum strength elastic structural design.Proc. ASCE 95, 653–663

    Google Scholar 

  • Taylor, J.E. 1993: Truss topology design for elastic/softening materials. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 451–468. Dordrecht: Kluwer

    Google Scholar 

  • Taylor, J.E.; Rossow, M.P. 1977: Optimal truss design based on an algorithm using optimality criteria.Int. J. Solids Struct. 13, 913–923

    Google Scholar 

  • Topping, B.M.V. 1992: Mathematical programming techniques for shape optimization of skeletal structures. In: Rozvany, G.I.N. (ed.)Shape and layout optimization in structural design, pp. 349–276. Vienna: Springer

    Google Scholar 

  • Zhou, M.; Rozvany, G.I.N. 1991: The COC Algorithm, part II: topological, geometrical and generalized shape optimization.Comp. Meth. Appl. Mech. Engrg. 89, 309–336

    Google Scholar 

  • Zhou, M.; Rozvany, G.I.N. 1992/1993: DCOC: an optimality criteria method for large systems. Part I: theory. Part II: algorithm.Struct. Optim. 5, 12–25:6, 250–262

    Google Scholar 

  • Zibulevsky, M.; Ben-Tal, A. 1993: On a new class of augmented Lagrangian methods for large scale convex programming problems.Research Report 2/93, Optimization Lab., Technion (Israel Inst. of Technology)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendsøe, M.P., Ben-Tal, A. & Zowe, J. Optimization methods for truss geometry and topology design. Structural Optimization 7, 141–159 (1994). https://doi.org/10.1007/BF01742459

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01742459

Keywords

Navigation