Skip to main content
Log in

Multiple eigenvalues in structural optimization problems

  • Review Paper
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

This paper discusses characteristic features and inherent difficulties pertaining to the lack of usual differentiability properties in problems of sensitivity analysis and optimum structural design with respect to multiple eigenvalues. Computational aspects are illustrated via a number of examples.

Based on a mathematical perturbation technique, a general multiparameter framework is developed for computation of design sensitivities of simple as well as multiple eigenvalues of complex structures. The method is exemplified by computation of changes of simple and multiple natural transverse vibration frequencies subject to changes of different design parameters of finite element modelled, stiffener reinforced thin elastic plates.

Problems of optimization are formulated as the maximization of the smallest (simple or multiple) eigenvalue subject to a global constraint of e.g. given total volume of material of the structure, and necessary optimality conditions are derived for an arbitrary degree of multiplicity of the smallest eigenvalue. The necessary optimality conditions express (i) linear dependence of a set of generalized gradient vectors of the multiple eigenvalue and the gradient vector of the constraint, and (ii) positive semi-definiteness of a matrix of the coefficients of the linear combination.

It is shown in the paper that the optimality condition (i) can be directly applied for the development of an efficient, iterative numerical method for the optimization of structural eigenvalues of arbitrary multiplicity, and that the satisfaction of the necessary optimality condition (ii) can be readily checked when the method has converged. Application of the method is illustrated by simple, multiparameter examples of optimizing single and bimodal buckling loads of columns on elastic foundations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arnold, V.I. 1989:Mathematical methods of classic mechanics. Moscow: Nauka

    Google Scholar 

  • Barthelemy, B.; Haftka, R.T. 1988: Accuracy analysis of the semianalytical method for shape sensitivity analysis. AIAA Paper 88–2284,Proc. AIAA/ASME/ASCE/ASC 29th Structures, Structural Dynamics and Materials Conf., Part 1, pp. 562–581. Also:Mech. Struct. Mach. 18, 407–432 (1990)

    Google Scholar 

  • Bathe, K.-J. 1982:Finite element procedures in engineering analysis. New Jersey: Prentice-Hall

    Google Scholar 

  • Bendsøe, M.P.; Olhoff, N.; Taylor, J.E. 1983: A variational formulation for multicriteria structural optimization.Mech. Struct. Mach. 11, 523–544

    Google Scholar 

  • Bratus, A.S.; Seyranian, A.P. 1983: Bimodal solutions in eigenvalue optimization problems.Prikl. Matem. Mekhan. 47, 546–554. Also:Appl. Math. Math. Mech. 47, 451–457

    Google Scholar 

  • Choi, K.K.; Haug, E.J. 1981: Optimization of structures with repeated eigenvalues. In: Haug, E.J.; Cea, J. (eds.)Optimization of distributed parameter structures, Vol. 1, pp. 219–277. Amsterdam: Sijthoff and Nordhoff

    Google Scholar 

  • Choi, K.K.; Haug, E.J.; Lam, H.L. 1982: A numerical method for distributed parameter structural optimization problems with repeated eigenvalues.J. Struct. Mech. 10, 191–207

    Google Scholar 

  • Clarke, F. 1990:Optimization and nonsmooth analysis, classics in applied mathematics 5. Philadelphia: Society for Industrial and Applied Mathematics

    Google Scholar 

  • Cox, S.J. 1992: The shape of the ideal column.The Mathematical Intelligencer 14, 6–24

    Google Scholar 

  • Cox, S.J.; Overton, M.L. 1992: On the optimal design of columns against buckling.SIAM J. Math. Anal. 23, 287–325

    Google Scholar 

  • Courant, R.; Hilbert, D. 1953:Methods of mathematical physics, Vol. 1. New York: Interscience Publishers

    Google Scholar 

  • Demyanov, V.F.; Malozemov, V.N. 1972:Introduction to minimax. Moscow: Nauka

    Google Scholar 

  • Gajewski, A. 1990: Multimodal optimal design of structural elements.Mechanika Teoretyczna i Stosowana 28, 75–92

    Google Scholar 

  • Gajewski, A.; Zyczkowski, M. 1988:Optimal structural design under stability constraints. Dordrecht: Kluwer

    Google Scholar 

  • Haug, E.J.; Choi, K.K.; Komkov, V. 1986:Design sensitivity analysis of structural systems. New York: Academic Press

    Google Scholar 

  • Haug, E.J.; Rousselet, B. 1980: Design sensitivity analysis in structural mechanics. II: eigenvalue variations.J. Struct. Mech. 8, 161–186

    Google Scholar 

  • Kurosh, A.G. 1962:Course of higher algebra. Moscow: Fizmatgis

    Google Scholar 

  • Lancaster, P. 1964: On eigenvalues of matrices dependent on a parameter.Numerische Mathematik 6, 377–387

    Google Scholar 

  • Lund, E.; Olhoff, N. 1993a: Reliable and efficient finite element based design sensitivity analysis of eigenvalues. In: Herskovits, J. (ed.)Structural optimization '93, Vol. 2, pp. 197–204. Rio de Janeiro: COPPE

    Google Scholar 

  • Lund, E.; Olhoff, N. 1993b: Shape design sensitivity analysis of eigenvalues using “exact” munerical differentiation of finite element matrices.Report No. 54, Institute of Mechanical engineering, Aalborg University. Also:Struct. Optim. 8 (1994)

  • Masur, E.F. 1984: Optimal structural design under multiple eigenvalue constraints.Int. J. Solids Struct. 20, 211–231

    Google Scholar 

  • Masur, E.F. 1985: Some additional comments on optimal structural design under multiple eigenvalue constraints.Int. J. Solids Struct. 21, 117–120

    Google Scholar 

  • Masur, E.F.; Mróz, Z. 1979: Non-stationary optimality conditions in structural design.Int. J. Solids Struct. 15, 503–512

    Google Scholar 

  • Masur, E.F.; Mróz, Z. 1980: Singular solutions in structural optimization problems. In: Nemat-Nesser, S. (ed.)Variational methods in the mechanics of solids, pp. 337–343. New York: Pergamon

    Google Scholar 

  • Myslinski, A.; Sokolowski, J. 1985: Nondifferentiable optimization problems for elliptic systems.SIAM J. Control and Optimization 23, 632–648

    Google Scholar 

  • Olhoff, N. 1980: Optimal design with respect to structural eigenvalues. In: Rimrott, F.P.J.; Tabarrot, B. (eds.)Proc. XVth Int. IUTAM Cong. Theoretical and Applied Mechanics, pp. 133–149. Amsterdam: North-Holland

    Google Scholar 

  • Olhoff, N.; Plaut, R.H. 1983: Bimodal optimization of vibrating shallow arches.Int. J. Solids Struct. 19, 553–570

    Google Scholar 

  • Olhoff, N.; Rasmussen, S.H. 1977: On single and bimodal optimum buckling loads of clamped columns.Int. J. Solids Struct. 13, 605–614

    Google Scholar 

  • Olhoff, N.; Rasmussen, J.; Lund, E. 1993: A method of “exact” numerical differentiation for error elimination in finite element based semi-analytical shape sensitivity analysis.Mech. Struct. Mach. 21, 1–66

    Google Scholar 

  • Olhoff, N.; Taylor, J.E. 1983: On structural optimization.J. Appl. Mech. 50, 1139–1151

    Google Scholar 

  • Overton, M.L. 1988: On minimizing the maximum eigenvalue of a symmetric matrix.SIAM J. Matrix Anal. Appl. 9, 256–268

    Google Scholar 

  • Plaut, R.H.; Johnson, L.W.; Olhoff, N. 1986: Bimodal optimization of compressed columns on elastic foundations.J. Appl. Mech. 53, 130–134

    Google Scholar 

  • Prager, S.; Prager, W. 1979: A note on optimal design of columns.Int. J. Mech. Sci. 21, 249–251

    Google Scholar 

  • Seyranian, A.P. 1983: A solution of a problem of Lagrange.Dokl. Akad. Nauk SSSR 271, 337–340. Also:Sov. Phys. Dokl. 28, 550–551

    Google Scholar 

  • Seyranian, A.P. 1984: On a problem of Lagrange.Mekhanika Tverdogo Tela 2, 101–111. Also:Mechanics of Solids 19, 100–111

    Google Scholar 

  • Seyranian, A.P. 1987: Multiple eigenvalues in optimization problems.Prikl. Mat. Mekh. 51, 349–352. Also:Appl. Math. Mech. 51, 272–275

    Google Scholar 

  • Tadjbakhsh, I.; Keller, J. 1962: Strongest columns and isoperimetric inequalities for eigenvalues.J. Appl. Mech. 29, 159–164

    Google Scholar 

  • Taylor, J.E.; Bendsøe, M.P. 1984: An interpretation for min-max structural design problems including a method for relaxing constraints.Int. J. Solids Struct. 20, 301–314

    Google Scholar 

  • Wittrick, W.H. 1962: On eigenvalues of matrices dependent of a parameter.Numerische Mathematik 6, 377–387

    Google Scholar 

  • Zhong, W.; Cheng, G. 1986: Second-order sensitivity analysis of multimodal eigenvalues and related optimization techniques.Mech. Struct. Mach. 14, 421–436

    Google Scholar 

  • Zyczkowski, M. 1989 (ed.):Structural optimization under stability and vibration constraints. Berlin, Heidelberg, New York: Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Ernest F. Masur

Guest professor during the period 16 November to 11 December, 1992 and 15 November to 12 December, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seyranian, A.P., Lund, E. & Olhoff, N. Multiple eigenvalues in structural optimization problems. Structural Optimization 8, 207–227 (1994). https://doi.org/10.1007/BF01742705

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01742705

Keywords

Navigation