Skip to main content
Log in

On Lévy (or stable) distributions and the Williams-Watts model of dielectric relaxation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper is concerned with the Lévy, or stable distribution function defined by the Fourier transform

$$Q_\alpha \left( z \right) = \frac{1}{{2\pi }}\int {_{ - \infty }^\infty \exp \left( { - izu - \left| u \right|^\alpha } \right)du} with 0< \alpha \leqslant 2$$

Whenα=2 it becomes the Gauss distribution function and whenα=1, the Cauchy distribution. Whenα≠2 the distribution has a long inverse power tail

$$Q_\alpha \left( z \right) \sim \frac{{\Gamma \left( {1 + \alpha } \right)\sin \tfrac{1}{2}\pi \alpha }}{{\pi \left| z \right|^{1 + \alpha } }}$$

In the regime of smallα, ifα¦logz¦≪1, the distribution is mimicked by a log normal distribution. We have derived rapidly converging algorithms for the numerical calculation ofQ α (z) for variousα in the range 0<α<1. The functionQ α (z) appears naturally in the Williams-Watts model of dielectric relaxation. In that model one expresses the normalized dielectric parameter as

$$ \in _n \left( \omega \right) \equiv \in '_n \left( \omega \right) - i \in ''_n \left( \omega \right) = - \int {_0^\infty e^{ - i\omega t} \left[ {{{d\phi \left( t \right)} \mathord{\left/ {\vphantom {{d\phi \left( t \right)} {dt}}} \right. \kern-\nulldelimiterspace} {dt}}} \right]} dt$$

with

$$\phi \left( t \right) = \exp - \left( {{t \mathord{\left/ {\vphantom {t \tau }} \right. \kern-\nulldelimiterspace} \tau }} \right)^\alpha $$

It has been found empirically by various authors that observed dielectric parameters of a wide variety of materials of a broad range of frequencies are fitted remarkably accurately by using this form ofφ(t).ε n (ω) is shown to be directly related toQ α (z). It is also shown that if the Williams-Watts exponential is expressed as a weighted average of exponential relaxation functions

$$\exp - \left( {{t \mathord{\left/ {\vphantom {t \tau }} \right. \kern-\nulldelimiterspace} \tau }} \right)^\alpha = \int {_0^\infty } g\left( {\lambda , \alpha } \right)e^{ - \lambda t} dt$$

the weight functiong(λ, α) is expressible as a stable distribution. Some suggestions are made about physical models that might lead to the Williams-Watts form ofφ(t).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Lévy,Théorie de l'addition des variables aléatoires (Gauthier-Villars, Paris, 1937).

    Google Scholar 

  2. B. V. Gdenko and A. N. Kolmogorov,Limit Distributions for Sums of Independent Random Variables (Addison-Wesley, Cambridge, Massachusetts, 1954).

    Google Scholar 

  3. W. Feller,An Inroduction to Probability Theory and Its Applications, Vol. II (Wiley, New York, 1966).

    Google Scholar 

  4. E. W. Montroll and B. J. West, inFluctuation Phenomena, p. 61, E. W. Montroll and J. L. Lebowitz, eds. (North-Holland, Amersterdam, 1979).

    Google Scholar 

  5. G. Williams and D. C. Watts,Trans. Faraday Soc. 66:2503 (1970).

    Google Scholar 

  6. G. Williams, D. C. Watts, S. B. Dev, and A. M. North,Trans. Faraday Soc. 67:1323 (1970).

    Google Scholar 

  7. C. T. Moynihan, L. P. Boesch, and N. L. La Berge,Phys. Chem. Glasses 14:122 (1973).

    Google Scholar 

  8. C. P. Lindsey and G. D. Patterson,J. Chem. Phys. 73:3348 (1980).

    Google Scholar 

  9. A. Cauchy,C. R. Acad. Sci. 37:202 (1853). Also inOeuvres Completes Ser. 1, Vol. 12, p. 94.

    Google Scholar 

  10. L. C. E. Struik,Physical Aging in Amorphous Polymers and Other Materials (Elsevier, Amsterdam, 1978).

    Google Scholar 

  11. M. Abromowitz and I. A. Stegun,1964 Handbook of Mathematical Functions, AMS 55.

  12. V. M. Zolotarev,Dokl. Acad. Nauk. USSR 98:715 (1954).

    Google Scholar 

  13. A. Wintner,Duke Math. J. 8:678 (1941).

    Google Scholar 

  14. D. R. Holt and E. L. Crow,J. Res. Natl. Bur. Stand. Sect. B 77B:143 (1973).

    Google Scholar 

  15. A. N. Garroway, W. M. Ritchey, and M. B. Moniz,Macromolecules 15:1051 (1982).

    Google Scholar 

  16. Y. Ishida and K. Yamafugi,Kolloid Z. 177:7 (1961).

    Google Scholar 

  17. C. T. Moynihan and P. G. Gupta,J. Non-Crystalline Solids 29:143 (1978).

    Google Scholar 

  18. K. L. Ngai and C. T. White,Phys. Rev. B 20:2475 (1979).

    Google Scholar 

  19. G. P. Johari,Ann. NY Acad. Sci. 279:117 (1976).

    Google Scholar 

  20. H. Pollard,Bull. Am. Math. Soc. 52:908 (1946).

    Google Scholar 

  21. E. W. Montroll and M. F. Shlesinger,Proc. Natl. Acad. Sci. USA 79:3380 (1982); andJ. Stat. Phys. 32:209 (1983).

    Google Scholar 

  22. W. Shockley,Proc. IRE 45:279 (1957).

    Google Scholar 

  23. S. H. Glarum,J. Chem. Phys. 33:1371 (1960).

    Google Scholar 

  24. H. Scher and E. W. Montroll,Phys. Rev. B 12:2455 (1975).

    Google Scholar 

  25. E. Helfand,J. Chem. Phys. 78:1931 (1983).

    Google Scholar 

  26. J. E. Shore and R. Zwanzig,J. Chem. Phys. 63:5445 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montroll, E.W., Bendler, J.T. On Lévy (or stable) distributions and the Williams-Watts model of dielectric relaxation. J Stat Phys 34, 129–162 (1984). https://doi.org/10.1007/BF01770352

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01770352

Key words

Navigation