Skip to main content
Log in

Optical methods to characterise the composition and homogeneity of lithium niobate single crystals

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A number of the physical properties of lithium niobate strongly depend on sample composition. Although several procedures for the determination of the composition have already been published, a critical survey and an introduction to standard methods recommendable also for laboratories active in R&D of LiNbO3 devices is still missing. Within a detailed description of a series of methods, we summarise their capabilities and accuracy. The proposed optical characterisation methods, in particular those based on the generation of second harmonic light and those involving the measurement of birefringence and the UV absorption edge are found to be most convenient for an accurate and fast standard characterisation of LiNbO3 single crystals. An absolute accuracy of 0.1 mol% based on a comparison with the Curie temperature calibration method and a relative accuracy of up to 0.01 mol% are available. Some of these methods are also suited for the two or three dimensional homogeneity control of LiNbO3 single crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Räuber: InCurrent Topics in Materials Science, ed. by Kaldis, Vol. 1 (North-Holland, Amsterdam 1978) p. 48

    Google Scholar 

  2. R. S. Weis, T. K. Gaylord: Appl. Phys A37, 191 (1985)

    Google Scholar 

  3. O. F. Schirmer, O. Thiemann, M. Wahlecke: J. Phys. Chem. Solids52, 185 (1991)

    Google Scholar 

  4. E. Krätzig, O. F. Schirmer: InPhotorefractive Materials and Their Applications, Eds. P. Günter and J.P. Huignard, Topics Appl. Phys. Vol. 61, Springer, Berlin, Heidelberg 1988

    Google Scholar 

  5. M. Lawrence: Reports on Progress in Phys.56, 363 (1993)

    Google Scholar 

  6. D. R. Selviah: MRS Bulletin, March 1994, p. 50

  7. P. Lerner, C. Legras, J. Dumas: J. Cryst Growth3–4, 231 (1968)

    Google Scholar 

  8. L. O. Svaasand, M. E. Eriksrud, G. Nakken, A. P. Grande: J. Cryst Growth22, 230 (1974)

    Google Scholar 

  9. S. Kan, M. Sakamoto, Y. Okana, K. Hoshikawa, T. Fukuda: J. Cryst. Growth119, 215 (1992)

    Google Scholar 

  10. K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, T. Hayashi: J. Cryst. Growth116, 327 (1992)

    Google Scholar 

  11. Y. S. Luh, M. M. Fejer, R. L. Byer, R. S. Feigelson: J. Cryst Growth85, 264 (1987)

    Google Scholar 

  12. N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura: J. Sol. State Chem:101, 340 (1992)

    Google Scholar 

  13. R. L. Holman: Mater. Sci. Res.11, 343 (1978)

    Google Scholar 

  14. D. H. Jundt, M. M. Fejer, R. L. Byer: IEEE J. Quantum Electron.26, 135 (1990)

    Google Scholar 

  15. G. I. Malovichko, V. G. Grachev, L. P. Yurchenko, V. Y. Proshko, E. P. Kokanyan, V. T. Gabrielyan: phys. stat. sol. (a)133, K29 (1992)

    Google Scholar 

  16. G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, M. Wählecke: Appl. Phys. A56, 103 (1993)

    Google Scholar 

  17. G.-Guo Zhong, J. Jian, Z.-Kong Wu, Proc. 11th Intern. Quantum Electronics Conf., June,1980, IEEE Cat. No. 80, CH-1561-0, p. 631

  18. T. Volk, N. Rubinina, V. Pryalkin: Opt. Lett.15, 996 (1990)

    Google Scholar 

  19. T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer: Appl. Phys. A60, 217 (1995)

    Google Scholar 

  20. J. C. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, M. Sato: Appl. Phys. Lett.61, 2156 (1992)

    Google Scholar 

  21. B. Grabmaier, F. Otto: J. Cryst Growth79, 682 (1986)

    Google Scholar 

  22. Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, M. Minakata: J. Appl. Phys.72, 3250 (1992)

    Google Scholar 

  23. Polgár, L. Jeszenszky, K. Raksányi, E. Hartmann: Acta Phys. Hung.47, 125 (1979)

    Google Scholar 

  24. J. R. Carruthers, G. E. Peterson, M. Grasso, P. M. Bridenbaugh: J. Appl. Phys.42, 1846 (1971)

    Google Scholar 

  25. U. Schlarb: Dissertation, Shaker (1994), ISBN 3-8265-0097-0, p. 69 ff.

  26. P. F. Bordui, R. G. Norwood, D. H. Jundt, M. M. Fejer: J. Appl. Phys.71, 875 (1992)

    Google Scholar 

  27. P. F. Bordui, R. G. Norwood, C. D. Bird, G. D. Calvert: J. Crystal Growth113, 61 (1991)

    Google Scholar 

  28. H. M. O'Bryan, P. K. Gallagher, C. D. Brandle: J. Am. Ceram. Soc.68, 493 (1985)

    Google Scholar 

  29. B. Guenais, M. Baudet, M. Minier, M. LeCun: Mater. Res. Bull.16, 643 (1981)

    Google Scholar 

  30. P. K. Gallagher, H. M. O'Bryan,Jr.: J. Am. Ceram. Soc.68, 147 (1985)

    Google Scholar 

  31. B. C. Grabmaier, W. Wersing, W. Koestler: J. Cryst Growth110, 339 (1991)

    Google Scholar 

  32. L. Kovács, K. Polgär: Cryst. Res. Techn.21, K101 (1986)

    Google Scholar 

  33. S. C. Abrahams, P. Marsh: Acta Cryst. B42, 61 (1986)

    Google Scholar 

  34. N. Zotov, H. Boysen, F. Frey, T. Metzger, E. Born: J. Phys. Chem. Solids,55, 145 (1994)

    Google Scholar 

  35. G. I. Malovichko, O. Cerclier, J. Estienne, V. G. Grachev, E. P. Kokanyan, C. Boulesteix: J. Phys. Chem. Solids 56, 1285 (1995)

    Google Scholar 

  36. G. E. Petersen, J. R. Carruthers: J. Solid State Chem.1, 98 (1969)

    Google Scholar 

  37. J. Blümel, E. Born, T. H. Metzger: J. Phys. Chem. Solids55, 589 (1994)

    Google Scholar 

  38. G.I. Malovichko, V. G. Grachev, O. F. Schirmer: Solid State Commun.89, 195 (1994)

    Google Scholar 

  39. J. Kushibiki, H. Takahashi, T. Kobayashi, N. Chubachi: Appl. Phys. Lett.58, 2622 (1991)

    Google Scholar 

  40. K. Yamada, H. Takemura, Y. Inoue et al.: Japan. J. Appl. Phys.26, Suppl. 26-2, 219 (1987)

    Google Scholar 

  41. I. Földvári, K. Polgár, R. Voszka, R. N. Balasanyan: Crystal Res. Technol.19, 1659 (1984)

    Google Scholar 

  42. U. Schlarb, K. Betzler: J. Appl. Phys. 73, 3472 (1993).

    Google Scholar 

  43. U. Schlarb, K. Betzler: Phys. Rev.B48, 15613 (1993)

    Google Scholar 

  44. N. Schmidt, K. Betzler, B. C. Grabmaier, Appl. Phys. Lett. 58, 34 (1991).

    Google Scholar 

  45. R. L. Byer, J. F. Young, R. S. Feigelson, J. Appl. Phys.41, 2320 (1970).

    Google Scholar 

  46. A. Reichert, K. Betzler: Ferroelectrics126, 9 (1992)

    Google Scholar 

  47. A. Reichert, K. U. Kasemir, K. Betzler: Ferroelectrics, in print (1996)

  48. U. Schlarb, K. Betzler: Ferroelectrics156, 99 (1994)

    Google Scholar 

  49. A. Reichert, K. Betzler: Ferroelectrics,156, 93 (1994)

    Google Scholar 

  50. A. Reichert, K. Betzler: J. Appl. Phys.79 (15 February 1996)

  51. L. Arizmendi: J. Appl. Phys.64, 4654 (1988)

    Google Scholar 

  52. U. van Olfen, R. A. Rupp, E. Krätzig, B. C. Grabmaier: Ferroelectrics Letters10, 133 (1989)

    Google Scholar 

  53. A. E. Balanevskaya, L. I. Pyatigorskaya, Z. I. Shapiro, L. N. Margolin, and E. A. Bovina, J. Appl. Spectrosc.38, 491 (1983)

    Google Scholar 

  54. S. Kojima: Jpn. J. Appl. Phys.32, 4373 (1993)

    Google Scholar 

  55. U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, M. Wöhlecke: Appl. Phys. A56, 311 (1993)

    Google Scholar 

  56. R. González, E. R. Hodgson, C. Ballesteros, Y. Chen: Phys. Rev. Lett.15, 2057 (1991)

    Google Scholar 

  57. J. H. Herrington, B. Dischler, A. Räuber, J. Schneider: Solid State Commun.12, 351 (1973)

    Google Scholar 

  58. L. Kovács, V. Szalay, R. Capelletti: Solid State Common.52, 1029 (1984)

    Google Scholar 

  59. A. Gröne, S. Kapphan: J. Phys. Chem. Solids56, 687 (1995)

    Google Scholar 

  60. L. Kovács, private communication

  61. C. Fischer, M. Wöhlecke, T. Volk, N. Rubinina: phys. stat. sol. (a)137, 247 (1993)

    Google Scholar 

  62. N. Schmidt, K. Betzler, S. Kapphan: Cryst. Latt. Def. and Amorph. Mat.15, 103 (1987).

    Google Scholar 

  63. U. Schlarb, M. Wöhlecke, B. Gather, A. Reichert, K. Betzler, T. Volk, N.Rubinina: Optical Materials4, 791 (1995).

    Google Scholar 

  64. U. Schlarb, B. Matzas, A. Reichert, K. Betzler, M. Wöhlecke, B. Gather, T. Volk: Ferroelectrics, in print (1996).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to O. F. Schirmer on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wöhlecke, M., Corradi, G. & Betzler, K. Optical methods to characterise the composition and homogeneity of lithium niobate single crystals. Appl. Phys. B 63, 323–330 (1996). https://doi.org/10.1007/BF01828734

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01828734

PACS

Navigation