Skip to main content
Log in

Uplift and cooling pathways derived from fission track analysis and mica dating: a review

  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Zusammenfassung

Die Definition von Zeit- und Temperaturpfaden für Episoden der Lithosphärenbewegung liefert nicht nur einen chronologischen Rahmen für die Krustendynamik, sondern erlaubt auch Abschätzungen der Krustenabkühlungs- und -heraushebungsraten. Wichtige Aspekte dieser Pfade sind die Grenzen die durch die Wahl des Zeitpunkts, sowohl für die Plattenkollision als auch der Lithosphärendehnung festgesetzt sind. Klassische Rb-Sr und K-Ar Glimmeralter sind zum Bestimmen der Abkühlungs- und Freilegungsraten in den Zentralalpen, im Vergleich zu den gemessenen Altern mit Temperaturabschätzungen für die Retention von Tochterisotopen benutzt worden. Beim ähnlichen Gebrauch von Zerfallsspuren lieferten Apatit- und Zirkonalter Daten für niedrige Temperaturintervalle (∼ 100 und ∼ 200°C). Kürzliche detaillierte Studien der getemperten Bewegungen der Spaltspuren in Apatit lieferten genauere Schätzungen der Abkühlungsrate, und erlaubten ein vorhersehbares modellieren der Zeit- und Längenparameter für gegebene T-t Pfade. In kontinentalen Kollisionszonen kann eine schnelle episodische Heraushebung, wie beispielsweise in den Westalpen, einer zeitgleichen monotonen Heraushebung der Zentralalpen gegenübergestellt werden. Zusätzliche Beispiele können im Tibet-Himalaya Orogengürtel, in den Südalpen von Neuseeland und in den bolivianischen Anden gefunden werden. In divergenten tektonischen Regimen wurde der Hinweis vom Einhergehen der Heraushebung und des Riflings in Spaltspurenaltern festgehalten; zum Beispiel am südöstlichen australischen Rand und am Roten Meer. Bei tektonischer Lage im Platteninnern, offenbaren unsere gegenwärtigen Spaltspurenerkundungsstudien der Britischen Inseln eine bisher unerkannte thermale Geschichte des Kristallins und der Sedimente gleichermaßen.

Abstract

Definition of time and temperature pathways for episodes of lithospheric movement provides not simply a chronological framework for crustal dynamism but also permits estimation of rates of crustal cooling and uplift. Important aspects of such pathways are the constraints provided for timing of both plate collision and lithospheric extension. Classically Rb-Sr and K-Ar mica ages have been used to delineate rates of cooling and exhumation in the Central Alps, by comparison of the measured ages with estimates of temperatures for the retention of daughter isotopes. Similar use of fission track apatite and zircon ages has provided data for lower temperature intervals (∼ 100 and ∼ 200°C respectively). Recent detailed studies of the annealing kinetics of fission tracks in apatite yield more precise estimates of cooling rate and permit predictive modelling of age and length parameters for given T,t pathways. In continental collision zones, fast episodic uplift in the western Alps can be contrasted with contemporaneous monotonic uplift in the Central Alps. Additional examples may be seen in the Tibet-Himalayan orogenic belt, in the southern Alps of New Zealand and in the Bolivian Andes. In divergent teceonic regimes, the record of uplift associated with rifting has been recorded by fission track ages in the southeastern Australian margin and around the Red Sea. In an intra-plate tectonic setting, our current fission track reconnaissance study in the British Isles is revealing a hitherto unrecognised thermal history for crystalline and sediment alike.

Résumé

L'établissement de trajets temps-température pour des épisodes de mouvements lithosphériques ne fournit pas seulement un canevas chronologique à la dynamique crustale; il permet aussi d'estimer les vitesses du refroidissement crustal et du soulèvement. Un aspect important de tels trajets réside dans les restrictions qu'ils apportent dans le déroulement chronologique des collisions de plaques et des extensions lithosphériques. Des déterminations classiques d'âge Rb-Sr et K-Ar sur mica ont été utilisées pour estimer les taux de refroidissement et d'exhumation dans les Alpes Centrales, par comparaison entre les âges mesurés et les températures de rétention des isotopes filles. De même les âges déterminés par traces de fission sur apatite et zircon ont fourni des informations sur les intervalles de température inférieurs (respectivement: ± 100° et 200°C. Des travaux détaillés récents relatifs à la cinétique de recuit des traces de fission dans 1'apatite ont fourni une estimation plus précise du taux de refroidissement et ont permis une modélisation prévisionnelle des paramètres d'âge et de longueur pour des trajets (T, t) donnés. Dans les zones de collision continentale, le soulèvement rapide et épisodique des Alpes Occidentales contraste avec le soulèvement monotone concommittant des Alpes Centrales. D'autres exemples sont fournis par la ceinture orogénique de l'Himalaya-Tibet, par les Alpes du Sud de Nouvelle Zélande et par les Andes de Bolivie. Dans les régimes tectoniques divergents, l'enregistrement des surrections associées à la formation des rifts a été réalisé par la méthode des traces de fission dans la bordure sud-est de l'Australie et autour de la Mer Rouge. Dans une situation tectonique intraplaque, l'étude de reconnaissance par traces de fission que nous poursuivons dans les Iles Britanniques révèle une histoire thermique, jusqu'ici inconnue, identique pour le Cristallin et les sédiments.

Краткое содержание

Термобарометрическ ие параметры движени я литосферы благоприя тствуют не только получению хронологи ческого обрамления д инамики Земной коры, но и разре шают оценить скорость охлаждения и поднятия ее. Важным является выбор време ни отсчета для провед ения границ при коллизиях плит и при расширении литосферы. Классичес ким является определ ение возраста по слюде мет одами Rb-Sr и К-Ar, позволяющим оценит ь скорость охлаждени я и обнажения в централ ьных Альпах; эти данные сравнили с изм еренным возрастом и оценкой температуры по удержанию изотопо впродуктов распада. Но такой мето д определения возраста апатитов и ц ирконов дает более низкую температуру н а 100 и 200 °?. При последних более детальных иссл едованиях движения следов трещин в апати тах удалось оценить точнее скорость охла ждения и составить модель параметров вр емени и долгот для путей T-t. В зоне коллизи й материков эпизодич еские поднятия, как напр, это наблюдают в Западных Альпах, мож но противопоставить одновременным монот онным поднятиям цент ральных Альп. Дополнительные примеры можно установить в Ти бетско-Гималайском поясе орогена, в Южных Альпах Новой Зеланди и и в Андах Bоливии. Указа ния на поднятия и расширения находят для расходящихся условий тектоническ их процессов по устан овленному возрасту следов разл омов. Напр.: на юго-восточном краю Австралии и в районе Красного моря. При изу чении разломов на британских островах установили неизвест ную до сих пор температур ную историю кристалл ина и седиментов при совр еменном тектоническ ом положении их в центра льной части плит.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Armstrong, R. L. (1966): K-Ar dating of plutonic and volcanic rocks in orogenic belts. - In: Schaeffer, O. A. & Zähringer, (eds.), Potassium-Argon Dating, Springer-Verlag, Berlin, pp 117–133.

    Google Scholar 

  • Bearth, P. (1958): Über einen Wechsel der Mineralfazies in der Wurzelzone des Penninikums. - Schweiz. Mineral. Petrogr. Mitt.,38, 363–373.

    Google Scholar 

  • Benjamin, M. T., Johnson, N. M. &Naeser, C. W. (1987): Recent rapid uplift in the Bolivian Andes: evidence from fission track dating. - Geology,15, 680–683.

    Google Scholar 

  • Berger, G. W. &York, D. (1981): Geothermometry from40Ar-39Ar dating experiments. - Geochim. Cosmochim. Acta,45, 795–811.

    Google Scholar 

  • Bhandari, N., Bhat, S. G., Lal, D., Rajagopalan, G., Tamhane, A. S. &Venkatavaradan, V. S. (1971): Fission fragment tracks in apatite: recordable track lengths. - Earth Planet. Sci. Letts.,13, 191–199.

    Google Scholar 

  • Bohannon, R. G. (1986): Tectonic configuration of the Western Arabian continental margin, southern Red Sea. - Tectonics,5, 477–499.

    Google Scholar 

  • Copeland, P., Harrison, T. M., Kidd, W. S. F., Xu, R.&Zhang, Y. (1987): Rapid early Miocene acceleration of uplift in the Gangdese Belt Xizang (southern Tibet) and its bearing on accommodation mechanisms of the India-Asia collision. - Earth Planet. Sci. Lett.,86, 240–252.

    Google Scholar 

  • Coward, M. P.,Windley, B. F.,Broughton, R.,Luff, I. W.,Petterson, M.,Pudsey, C,Rex, D. &Asif Khan, M. (1986): Collision tectonics in the NW Himalayas. - In: Coward, M. P. & Ries, A. C. (eds.) Collision Tectonics. Spec. publn. geol. soc. Lond.,19, 203–219.

  • —,Butler, R. W. H., Asif Khan, M. &Knipe, R. J. (1987): The tectonic history of Kohistan and its implications for Himalayan structure. - J. geol. soc. Lond.,144, 377–391.

    Google Scholar 

  • Daixmeyer, R. D. (1978):40Ar/39Ar incremental release ages of hornblende and biotite across the Georgia Inner Piedmont: their bearing on Late Palaeozoic — Early Mesozoic tectonothermal history. - Am. J. Sci.,278, 124–149.

    Google Scholar 

  • Dalrymple, G. B. &Lanphere, M. A. (1971): Potassiumargon Dating. - Freeman W. H. & Co., San Francisco, 258 p.

    Google Scholar 

  • Deutsch, A. &Steiger, R. H. (1985): Hornblende K-Ar ages and the climax of Tertiary metamorphism in the Lepontine Alps (South Central Switzerland): an old problem reassessed. - Earth Planet. Sci. Lett.,72, 175–189.

    Google Scholar 

  • Dodson, M. H. (1973): Closure temperature in cooling geochronological and petrological systems. - Contrib. Mineral. Petrol.,40, 259–274.

    Google Scholar 

  • Fitzgerald, P. G., Sandiford, M., Barrett, P. J. &Gleadow, A. J. W. (1986/87): Asymmetric extension associated with uplift and subsidence in the Transantarctic Mountains and the Ross Embayment. - Earth Planet. Sci. Letts.,81, 67–78.

    Google Scholar 

  • Fleischer, R. L.,Price, P. B. &Walker, R. M. (1975): Nuclear Tracks in Solids: Principles and Applications - University of California Press, pp. 605.

  • Flisch, M. (1986): K-Ar dating of Quaternary samples. - In: Hurford, A. J., Jäger, E. & Ten Cate, J. A. M. (eds). Dating Young Sediments: Proceedings of the Workshop, Beijing, China, September 1985.- CCOP-UNESCO Technical Publication,16, 299–323.

    Google Scholar 

  • Frey, M., Hunziker, J. C., Frank, W., Bocquet, J., Dalpiaz, G. V., Jäger, E. &Niggli, E. (1974): Alpine metamorphism of the Alps — a review. - Schweiz. Mineral. Petrogr. Mitt.,54, 247–290.

    Google Scholar 

  • —,Bucher, K., Frank, E. &Mullis, J. (1980): Alpine metamorphism along the geotraverse Basel-Chiasso — a review. - Eclog. Geol. Helv.,73, 527–546.

    Google Scholar 

  • Girdler, R. M. &Styles, P. (1974): Two-stage Red Sea floor spreading. - Nature,247, 7–11.

    Google Scholar 

  • Gleadow, A. J. W., Duddy, I. R., Green, P. F. &Lovering, J. F. (1986): Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. - Contrib. Mineral. Petrol.,94, 405–415.

    Google Scholar 

  • — &Fitzgerald, P. G. (1987): Uplift history and structure of the Transantarctic Mountains: new evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. - Earth Planet. Sci. Letts.,82, 1–14.

    Google Scholar 

  • Green, P. F. (1986): On the thermo-tectonic evolution of Northern England: evidence from fission track analysis. - Geol. Mag.,123, 493–506.

    Google Scholar 

  • —,Duddy, I. R., Laslett,G. M., Hegarty, K. A., Gleadow, A. J. W. &Lovering, J. F. (1989): Thermal annealing of fission tracks in apatite 4: quantitative modelling techniques and extension to geological timescales. - Chem. Geol. (Isotope Geoscience Section),79, 155–182.

    Google Scholar 

  • Gulson, B. L. (1973): Age relations in the Bergell region of the South-East Swiss Alps: with some geochemical comparisons.- Eclog. Geol. Helv.,66, 293–313.

    Google Scholar 

  • Hanson, G. N. &Gast, P. W. (1967): Kinetic studies in contact metamorphic zones. - Geochim. Cosmochim. Acta,31, 1119–1153.

    Google Scholar 

  • Harper, C. T. (1967): The geological interpretation of potassium-argon ages of metamorphic rocks from the Scottish Caledonides. - Scott. J. Geol.,3, 46–66.

    Google Scholar 

  • Harrison, T. M. &McDougall, I. (1980): Investigations of an intrusive contact, northwest Nelson, New Zealand I: Thermal, chronological and isotopic constraints. - Geochim. Cosmochim. Acta,44, 1985–2003.

    Google Scholar 

  • Heitzmann, P. (1975): Zur Metamorphose und Tektonik im südöstlichen Teil der Lepontinischen Alpen.- Schweiz. Mineral. Petrogr. Mitt.,55, 467–522.

    Google Scholar 

  • Hunziker, J. C. (1974): Rb-Sr and K-Ar age determination and the Alpine tectonic history of the Western Alps. - Memorie degli Isituti Geologia e Mineralogia dell' Universita di Padova,31, pp. 54.

    Google Scholar 

  • Hurford, A. J. (1977a): A preliminary fission track dating survey of Caledonian »Newer and Last Granites« from the Highlands of Scotland. - Scott. J. Geol.,13, 271–284.

    Google Scholar 

  • — (1977b): Fission track dates from two Galloway granites, Scotland. - Geol. Mag.,114, 299–304.

    Google Scholar 

  • — (1986a): Application of the fission track dating method to young sediments: principles, methodology and examples. - In: Hurford, A. J., Jäger, E. & Ten Cate, J. A. M. (eds.) Dating Young Sediments: Proceedings of the Workshop, Beijing, China, September 1985. CCOP-UNESCO Technical Publication16, Bangkok, 199–233.

    Google Scholar 

  • — (1986b): Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line. - Contrib., Mineral. Petrol.,93, 413–427.

    Google Scholar 

  • — (1990): Standardization of fission track dating calibration: recommendation by the Fission Track Working Group of the I.U.G.S. Subcommission on Geochronology. - Chem. Geol. (Isotope Geoscience Section),80, 171–178.

    Google Scholar 

  • -,Hunziker, J. C. &Stöckhert, B. (in press): Constraints on the late thermotectonic evolution of the Western Alps: evidence for episodic rapid uplift. Tectonics, (in press).

  • Jäger, E. (1979): The Rb-Sr method. - In:Jäger, E. & Hunziker, J. C. Lectures in Isotope Geology, Springer-Verlag, Berlin, 11–26.

    Google Scholar 

  • Kamp, P. J., Green, P. F. &White, S. H. (1989): Fission track analysis reveals character of collisional tectonics in New Zealand. -Tectonics,8, 169–195.

    Google Scholar 

  • Kohn, B. P. &Eyal, M. (1981): History of the crystalline basement of Sinai and its relation to opening of the Red Sea as revealed by fission track dating of apatites. - Earth Planet. Sci. Lett.,52, 129–141.

    Google Scholar 

  • Laslett, G. M., Gleadow, A. J. W. &Duddy, I. R. (1984): The relationship between fission track length and track density in apatite. - Nuclear Tracks,9, 29–38.

    Google Scholar 

  • Lewis, C. L. E. (1990): Thermal history of the Kunlun Batholith, N. Tibet and implications for uplift of the Tibetan Plateau.- Nuclear Tracks,17, 301–307.

    Google Scholar 

  • Moore, M. E., Gleadow, A. J. W. &Lovering, J. F. (1986): Thermal evolution of continental margins: new evidence from fission tracks in basement apatites from southeastern Australia. - Earth Planet. Sci. Lett.,78, 255–270.

    Google Scholar 

  • Naeser, C. W. (1979): Fission track dating and geologic annealing of fission tracks. - In: Jäger, E. & Hunziker, J. C. (eds.), Lectures in Isotope Geology, Springer-Verlag, Heidelberg, pp 154–169.

    Google Scholar 

  • Niggli, E. (1969): Mineral Zonen der alpinen Metamorphose in den Schweizer Alpen. - International Geological Congress Copenhagen, 132–138.

  • Omar, G. I., Kohn, B. P., Lutz, T. M. &Faul, H. (1987): The cooling history of Silurian to Cretaceous alkaline ring complexes, south Eastern Desert, Egypt, as revealed by fission track analysis. - Earth Planet. Sci. Lett.,83, 94–108.

    Google Scholar 

  • Parrish, R. (1983): Cenozoic thermal evolution and tectonics of the Coast Mountains of British Columbia 1: Fission track dating, apparent uplift rates and patterns of uplift. - Tectonics,2, 601–631.

    Google Scholar 

  • Purdy, J. W. &Jäger, E. (1976): K-Ar ages on rock-forming minerals from the Central Alps. - Memorie degli Istituta di Geologia e Mineralogia dell' Universita di Padova,30, 30 pp.

  • Quaife, D. R. (1979): Some applications and limitations of fission track dating. - Unpublished doctoral thesis, University of London.

  • Schmid, S. M., Zingg, A. &Handy, M. (1987): The kinematics of movement along the Insubric Line and the emplacement of the Ivrea Zone. - Tectonophys.,135, 47–66.

    Google Scholar 

  • Steiger, R. H. &Jäger, E. (1977): Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. - Earth Planet. Sci. Letts.,36, 359–362.

    Google Scholar 

  • Stock, J. &Molnar, P. (1982): Uncertainties in the relative positions of Australia, Antarctica, Lord Howe and Pacific Plates since the late Cretaceous. - J. geophys. Res.,89, 4697–4714.

    Google Scholar 

  • Turner, D. L. &Forbes, R. B. (1976): K-Ar studies in two deep basement drillholes: a new estimate of argon blocking temperature for biotite. - Trans. Am. Geophys. Union,57, 353.

    Google Scholar 

  • Verschure, R. H., Andriessen, P. A. M., Boelrijk, N. A. I. M., Hebeda, E. H., Maijer, C., Priem, H. N. A. &Verdurmen, E. A. Th. (1980): On the thermal stability of Rb/Sr and K/Ar biotite systems: evidence from coexisting Sveconorwegian (ca. 870 Ma) and Caledonian (ca. 400 Ma) biotites from SW Norway. - Contrib. Mineral. Petrol.,74, 245–252.

    Google Scholar 

  • Vogler, W. S. &Voll, G. (1981): Deformation and metamorphism at the south margin of the Alps, East of Bellinzona, Switzerland. - Geol. Rdsch.,70, 1232–1262.

    Google Scholar 

  • Wagner, G. A. &Storzer, D. S. (1970): Die Interpretation von Spaltspurenaltern am Beispiel von natü rlichen Gläsern, Apatiten und Zirkonen. - Eclog. Geol. Helv.,63, 335–344.

    Google Scholar 

  • — &Reimer, G. A. (1972): Fission track tectonics: the tectonic interpretation of fission track ages. - Earth Planet. Sci. Letts.,14, 263–268.

    Google Scholar 

  • Reimer, G. M. &Jäger, E. (1977): Cooling ages derived by apatite fission track, mica Rb/Sr and K/Ar dating: the uplift and cooling history of the Central Alps. Memorie degli Istituti di Geologia e Mineralogia dell' Universita di Padova,30, 27 pp.

  • Wellman, H. W. (1979): An uplift map for the South Island of New Zealand, and a model for uplift of the Southern Alps.-Bull. Roy. Soc. N.Z.,18, 13–20.

    Google Scholar 

  • Wenk, E. (1962): Plagioklas als Indexmineral in den Zentralalpen. - Schweiz. Mineral. Petrogr. Mitt.,42, 139–153.

    Google Scholar 

  • Zeitler, P. K. (1985): Cooling history of the NW Himalaya, Pakistan. -Tectonics,4, 127–151.

    Google Scholar 

  • —,Johnson, N. M., Naeser, C. W. &Tahirkheli, R. A. K. (1982): Fission track evidence for Quaternary uplift of the Nanga Parbat region, Pakistan. - Nature,298, 255–257.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurford, A.J. Uplift and cooling pathways derived from fission track analysis and mica dating: a review. Geol Rundsch 80, 349–368 (1991). https://doi.org/10.1007/BF01829371

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01829371

Keywords

Navigation