Skip to main content
Log in

Pattern formation in morphogenesis

Analytical treatment of the Gierer-Meinhardt model on a sphere

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We first treat the Gierer-Meinhardt equations by linear stability analysis to determine the critical parameter, at which the homogeneous distributions of activator and inhibitor concentrations become unstable. We find two types of instabilities: one leading to spatial pattern formation and another one leading to temporal oscillations. We consider the case where two instabilities are present. Using the method of generalized Ginzburg-Landau equations introduced earlier we then analyze the nonlinear equations. As we are mainly interested in spatial pattern formation on a sphere we consider the problem under an appropriate constraint. Combining the two occurring solutions we find patterns well-known in biology, such as a gradient system and temporal oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Auchmuty, J. F. G., Nicolis, G.: Bifurcation analysis of nonlinear reaction-diffusion-equations. Bull. Math. Biol.37, 323–365 (1975); see also: van der Werf, T. J., Wilhelms, H. E.: Steady state bifurcation analysis of reaction diffusion equations — a critique

    Google Scholar 

  2. Boa, J. A., Cohen, D. S.: Bifurcations of localized disturbances in a model biochemical reaction. SIAM J. Appl. Math.30, 1 (1976)

    Article  Google Scholar 

  3. Edmonds, A. R.: Angular momentum in quantum mechanics, pp. 45–50, 62–64. Princeton University Press (1960)

  4. Gierer, A.: Generation of biological pattern and form. Some physical, mathematical, and logical aspects. Progress Biophys. Molec. Biol. vol. 37, pp. 1–47. New York: Pergamon Press 1981

    Google Scholar 

  5. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik12, pp. 30–39. Berlin-Heidelberg-New York: Springer 1972

  6. Gierer, A., Meinhardt, H.: Applications of a theory of biological pattern formation based on lateral inhibition. J. Cell. Sci.15, 321–376 (1974)

    Google Scholar 

  7. Gierer, A., Meinhardt, H.: Biological pattern formation involving lateral inhibition. Lect. Math. Life Sci.7, 163–183 (1974)

    Google Scholar 

  8. Granero, M. I., Porati, A., Zanacca, D.: Bifurcation analysis of pattern formation in a diffusion governed morphogenetic field. J. Math. Biol.4, 21–27 (1977)

    Article  Google Scholar 

  9. Haken, H., Olbrich, H.: Analytical treatment of pattern formation in the Gierer-Meinhardt model of morphogenesis. J. Math. Biol.6, 317–331 (1978)

    Google Scholar 

  10. Haken, H.: Synergetics, An introduction, pp. 191–223. Berlin-Heidelberg-New York: Springer 1978

    Google Scholar 

  11. Haken, H.: Statistical physics of bifurcation, spatial structures and fluctuations of chemical reactions. Z. Phys.B20, 413 (1975); Haken, H.: Generalized Ginzburg-Landau equations for phase transition-like phenomena in lasers, nonlinear optics, hydrodynamics and chemical reactions. Z. Phys.B21, 105 (1975)

    Google Scholar 

  12. Haken, H.: Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems. Rev. Mod. Phys.47, 67 (1975)

    Article  Google Scholar 

  13. Haken, H., Sauermann, H.: Frequency shifts of laser models in solid state and gaseous systems. Z. Phys.176, 47 (1963)

    Article  Google Scholar 

  14. Hunding, A., Billing, G. D.: Secondary bifurcations in spherical reaction-diffusion systems. Chemical Physics45, 3 (1980)

    Article  Google Scholar 

  15. Ibanez, J. L., Velarde, M. G.: Nonlinear reaction and diffusion on a sphere: A simple autocatalytic model with Michaelis-Menten saturation law. J. Non-Equilib. Thermodyn.3, 63–82 (1978)

    Google Scholar 

  16. Keener, J. P.: Activators and inhibitors in pattern formation. Stud. Appl. Math.59, 1–23 (1978)

    Google Scholar 

  17. Kogelmann, S., Keller, J. B.: Transient behaviour of unstable nonlinear systems with applications to the Benard and Taylor problems. SIAM J. Appl. Math.20, No. 4, 619–637 (1971)

    Article  Google Scholar 

  18. Lange, C. G.: Branching from closely spaced eigenvalues with applications to a model biochemical reaction. SIAM J. Appl. Math.40, No. 1, 35–51 (1981)

    Article  Google Scholar 

  19. Mahar, T. J., Matkowsky, B. J.: A model biochemical reaction exhibiting secondary bifurcation. SIAM J. Appl. Math.32, No. 2, 394–404 (1977)

    Article  Google Scholar 

  20. Matkowsky, B. J.: A simple nonlinear dynamic stability problem. Bull. AMS76, 620–625 (1970)

    Google Scholar 

  21. Millman, M. H., Keller, J. B.: Perturbation theory of nonlinear boundary value problems. J. Math. Phys.10, No. 2, 342–361 (1969)

    Article  Google Scholar 

  22. Murray, J. P.: A prepattern formation mechanism for animal coat markings. J. Theor. Biol.88, 161–199 (1981)

    Article  Google Scholar 

  23. Parisi, E., Monroy, A.: The pattern of cell division in the early development of the sea urchin, Paracentrotus lividus. Dev. Biol.65, 38–49 (1978); Parisi, E., Monroy, A.: Actinomycin D disruption of the mitotic gradient in the cleavage stages of the sea urchin embryo. Dev. Biol.72, 167–174 (1979)

    Article  Google Scholar 

  24. Rodgers, W. H., Gross, P. R.: Inhomogeneous distribution of egg RNA sequences in the early embryo. Cell14, 279–285 (1978)

    Article  Google Scholar 

  25. Sattinger, D. H.: Topics in stability and bifurcation theory. Lecture notes in mathematics, vol. 309. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  26. Sattinger, D. H.: Group theoretic methods in bifurcation theory, pp. 144–149. Lecture notes in mathematics, vol. 762. Berlin-Heidelberg-New York: Springer 1978

    Google Scholar 

  27. Schaller, C. H.: Isolation and characterization of a low-molecular weight substance activating head and bud formation in hydra. J. Embryol. exp. Morph.29, 27–38 (1973)

    Google Scholar 

  28. Spratt, N. T.: Developmental biology. Wordsworth Belmont (1971)

  29. Stakgold, I.: Branching of nonlinear equations. SIAM Rev.13, No. 3, 284–332 (1971)

    Article  Google Scholar 

  30. Turing, A. M.: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc.B237, 37–72 (1952)

    Google Scholar 

  31. Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol.25, 1–47 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berding, C., Haken, H. Pattern formation in morphogenesis. J. Math. Biology 14, 133–151 (1982). https://doi.org/10.1007/BF01832840

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01832840

Key words

Navigation