Skip to main content
Log in

Thin filament infrared pyrometry: instantaneous temperature profile measurements in a weakly turbulent hydrocarbon premixed flame

  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Black body radiation from a fibre ofβ SiC can be used to investigate the temperature profile in a premixed flame. An infrared scanner determines the radiation intensity of the fibre, which is related to the fibre temperature by a calibration law. A fast time constant and excellent spatial resolution of the fibre make the method a very helpful tool to study the turbulent flames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

area

C, B :

temperature coefficient calibration

d L :

laminar flame thickness

d :

diameter of the fibre

F fg :

form factor

D :

exit diameter of burner

h :

convective heat coefficient

\(\vec I\) :

acoustic intensity vector

l t :

integral length scale of turbulence

p :

acoustic pressure

Re :

Reynolds number

S :

surface

T :

temperature

u′ :

root mean square velocity

u L :

laminar combustion velocity

U :

velocity at the burner exit

\(\vec v\) :

acoustic velocity vector without flow

r :

radial axis

x :

fibre axis

z :

axial axis

δ :

diffusion length along the fibre

ɛ :

emissivity

Φ :

equivalence ratio

λ :

thermal conductivity

ρc :

heat capacity

σ :

Stefan-Boltzmann constant

τ :

time response of the fibre

f :

fibre

g :

gas

:

surroundings

References

  1. Arconada A;Argiriou A;Papini F;Pasquetti R (1987) La mesure en thermographie infrarouge: calibration et traitement du signal. Journal of modern optics 34: 1237–1335

    Google Scholar 

  2. Ballantyne A;Moss JB (1977) Fine wire thermocouple measurements of fluctuating temperature. Combust Sci and Technol 17: 63–72

    Google Scholar 

  3. Bédat B (1992) Contribution à l'étude expérimentale aérothermoacoustique d'une flamme prémélangée turbulente dans un environnement non confiné. PhD thesis: E.N.S.A.E.

  4. Bédat B; Pauzin S; Giovaninni A; Biron D (1991) Acoustic and temperature measurements in an open turbulent premixed flame. In: heat transfer in internal combustion engines: The Eurotherm Seminar, Toulouse December 1991

  5. Bédat B; Biron D; Pauzin S to be submitted: Experimental acoustical study of weakly turbulent premixed flame. Combust Sci and Technol

  6. Bendat JS; Piersol AG (1980) Engineering applications of correlation and spectral analysis. John Wiley & Sons

  7. Bradley D;Matthews KJ (1968) Measurements of high gas temperatures with fine wire thermocouple. J Mech Eng Sci 10: 299–305

    Google Scholar 

  8. Carslaw HS; Jaeger JC (1959) Conduction of heat in solids. Oxford University Press

  9. Chiu H;Summerfield M (1974) Theory of combustion noise. Acta Astronautica: 1: 967–984

    Google Scholar 

  10. Creff R; Andre P; Hostache G (1984) Description d'un microthermomètre appliqué à la mesure de températures de fluides instationnaires. In Les mesures thermiques: Application aux systèmes et processus industriels: diagnostic, controle et conduite: Société Française des Thermiciens

  11. Eckbreth AC (1988) Laser diagnostics for combustion temperature and species. Abacus Press

  12. Fahy FJ (1987) Sound intensity. Elsevier applied science

  13. Gade S (1982) Sound intensity. Technical Report 3: Brüel & Kjaer

  14. Gaussorgues G (1984) La thermographie infra-rouge. Ed technique et documentation Lavoisier

  15. Heitor MV;Whitelaw JH (1986) Velocity, temperature and species characteristics of the flow in a gas-turbine combustor. Combust and Flame: 64: 1–32

    Google Scholar 

  16. Hurle IR;Sugden RB;Thomas A (1968) Sound emission from turbulent premixed flames. Proc Roy Soc 303: 409–427

    Google Scholar 

  17. Katsuki M; Misutani Y; Chikami M; Kittaka T (1986) Sound emission from a turbulent flame. In 21st International Symposium on Combustion: 1543–1550: The Combustion Institute

  18. Kuo KK (1986) Principles of Combustion. J Wiley and Sons

  19. Peters N (1986) Laminar flamelet concepts in turbulent combustion. In 21st International Symposium on Combustion 1231–1250: The Combustion Institute

  20. Poinsot T (1987) Analyse des instabilités de combustion des foyers turbulents prémélangés. PhD thesis: Université Paris-Sud Orsay

  21. Sbaibi A;Lecordier JC;Paranthoen P (1987) Réponse en fréquence d'un couple thermoélectrique dans un environnent purement radiatif ou convectif. Entropie: 135: 49–53

    Google Scholar 

  22. Siegel R; Howell JR (1981) Thermal radiation heat transfer. Hemisphere Publishing Corporation

  23. Strahle W (1971) On combustion generated noise. J Fluid Mech 49: 399–414

    Google Scholar 

  24. Touloukian YS (1967) Thermal properties of high temperature solid materials, Vol 5-Nonoxydes and their solutions and mixture including miscellaneous ceramic materials properties: 118–140. MacMillan

  25. Vilimpoc V; Goss LP (1988) SiC-based thin-filament pyrometry: theory and thermal properties. In 22nd International Symposium on Combustion: 1907–1914: The Combustion Institute

  26. Yoshida A (1986) Convective heat transfer and film cooling in turbomachinery. V.K.I. Lecture series: Rhode Saint Genese, Belgium

    Google Scholar 

  27. Yoshida A;Günther R (1980) Experimental investigation of thermal structure of turbulent premixed flames. Combust and Flame 38: 249–258

    Google Scholar 

  28. Yule AJ; Taylor DS; Chigier NA (1978) On line digital compensation and processing of thermocouple on signals for temperature measurements in turbulent flames. A.I.A.A Paper: 1978-30

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of the financial support of this work is from the French Ministry of Defence, Direction des Recherches, Etudes et Techniques

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauzin, S., Giovannini, A. & Bédat, B. Thin filament infrared pyrometry: instantaneous temperature profile measurements in a weakly turbulent hydrocarbon premixed flame. Experiments in Fluids 17, 397–404 (1994). https://doi.org/10.1007/BF01877042

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01877042

Keywords

Navigation