Skip to main content
Log in

Smooth interpolation of a mesh of curves

  • Published:
Constructive Approximation Aims and scope

Abstract

The interpolation of a mesh of curves by a smooth regularly parametrized surface with one polynomial piece per facet is studied. Not every mesh with a well-defined tangent plane at the mesh points has such an interpolant: the curvature of mesh curves emanating from mesh points with an even number of neighbors must satisfy an additional “vertex enclosure constraint.” The constraint is weaker than previous analyses in the literature suggest and thus leads to more efficient constructions. This is illustrated by an implemented algorithm for the local interpolation of a cubic curve mesh by a piecewise [bi]quarticC 1 surface. The scheme is based on an alternative sufficient constraint that forces the mesh curves to interpolate second-order data at the mesh points. Rational patches, singular parametrizations, and the splitting of patches are interpreted as techniques to enforce the vertex enclosure constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. E. Barnhill, G. Birkoff, W. J. Gordon (1973):Smooth interpolation in triangles. J. Approx. Theory,8: 114–128.

    Article  Google Scholar 

  • E. Beeker (1986):Smoothing of shapes designed with free form surfaces. Comput. Aided Design,18(4): 224–232.

    Google Scholar 

  • P. Bézier (1972): Numerical Control, Mathematics and Applications. New York: Wiley. English translation:A. R. Forrest ((1970): Emploi des Machines á Commande Numérique. Paris: Masson.

    Google Scholar 

  • P. Bézier (1977): Essai de Définition Numérique des Courbes et des Surfaces Expérimentales. Doctoral dissertation, Université Pierre et Marie Curie, Paris.

    Google Scholar 

  • P. Bézier (1986): The Mathematical Basis of the UNISURF CAD System. London: Butterworths.

    Google Scholar 

  • C. de Boor (1987):B-form basics. In: Geometric Modeling (G. Farin, ed.), Philadelphia: SIAM.

    Google Scholar 

  • C. de Boor, K. Höllig, M. Sabin (1987):High accuracy geometric Hermite interpolation. Comput. Aided Geom. Design,4:269–278.

    Google Scholar 

  • H. Chiyokura, F. Kimura (1983):Design of solids with free-form surfaces. Computer Graphics,17(3): 289–298.

    Google Scholar 

  • S. A.Coons (1967): Surfaces for Computer Aided Design of Space Forms. Report MAC-TR-41, Project MAC, M.I.T.

  • W.Degen (1989): Explicit Continuity Conditions for Adjacent Bézier Surface Patches. Preprint No. 5, Math. Inst: B Universität Stuttgart (submitted to Comput. Aided Geom. Design).

  • A. De Rose (1985): Geometric Continuity: A Parametrization Independent Measure of Continuity for Computer Aided Design. Thesis, University of California, Berkeley, California.

    Google Scholar 

  • G. Farin (1982):Triangular Bernstein-Bézier patches. Comput. Graphics and Image Process.,20: 272–282.

    Google Scholar 

  • G.Farin (1983):Smooth interpolation to scattered 3D-data. In: Surfaces in CAGD (R. F. Barnhill, W. Boehm, eds.).

  • G. Farin (1985):A modified Clough-Tocher interpolant. Comput. Aided Geom. Design,2:19–27.

    Google Scholar 

  • G.Farin (1986):Triangular Bernstein-Bézier patches. Comput. Aided Geom. Design,3.

  • G. Farin (1988): Curves and Surfaces for Computer Aided Geometric Design. New York: Academic Press.

    Google Scholar 

  • I. D. Faux, M. J. Pratt (1979): Computational Geometry for Design and Manufacture. Chichester: Ellis Horwood.

    Google Scholar 

  • J. A. Gregory (1974):Smooth interpolation without twist constraints. In: Computer Aided Geometrie Design, (R. E. Barnhill, R. F. Riesenfeld, eds.). New York: Academic Press, pp. 71–88.

    Google Scholar 

  • J.Hahn (1987): Geometric Continuous Patch Complexes. Technical Report, Brunel University. Presented at Oberwolfach, 10 February 1987, to appear in Comput. Aided Geom. Design.

  • G. J. Herron (1985):Smooth closed surfaces with discrete triangular interpolants. Comput. Aided Geom. Design,2:297–306.

    Google Scholar 

  • K. Höllig (1986): Geometric Continuity of Spline Curves and Surfaces. CS Technical Report No. 645, University of Wisconsin, Madison. Presented at SIGGRAPH '86.

    Google Scholar 

  • A. K. Jones (1988):Nonrectangular surface patches with curvature continuity, Comput. Aided Design20(6):325–335.

    Google Scholar 

  • D.Liu (1986):A geometric condition for smoothness between adjacent Bézier surface patches. Acta Math. Appl. Sinica,9(4).

  • D.Liu, J.Hoschek (1989):GC 1 continuity conditions between adjacent rectangular and triangular Bézier surface patches.21(4).

  • G. M. Nielson (1979):The side-vertex method for interpolation in triangles. J. Approx. Theory,25:318–336.

    Google Scholar 

  • G. M. Nielson (1986):A transfinite, visually continuous, triangular interpolant. In: Geometric Modeling: Applications and New Trends (G. Farin, ed.). Philadelphia: SIAM.

    Google Scholar 

  • J.Peters (1988a):Local cubic and bicubic C 1 surface interpolation with linearly varying boundary normal. Comput. Aided Geom. Design,7 (1990).

  • J. Peters (1988b):Smooth mesh interpolation with cubic patches. Comput. Aided Design,22(2): 109–120 (March 1990).

    Google Scholar 

  • J. Peters (1988c):Local generalized Hermite interpolation by quartic C 2 space curves. ACM TOG,8(3):235–242 (1989).

    Google Scholar 

  • J. Peters (1990a):Local smooth surface interpolation: a classification. Comput. Aided Geom. Design7:191–195.

    Google Scholar 

  • J.Peters (1990b): Fitting Smooth Parametric Surfaces to 3D Data. CMS Technical Report No. 91-2.

  • B.Piper (1987):Visually smooth interpolation with triangular Bézier patches. In: Geometric Modeling (G. Farin, ed.).

  • M. A.Sabin (1968): Conditions for Continuity of Surface Normal Between Adjacent Parametric Surfaces. Technical Report, British Aircraft Corporation Ltd.

  • M. A.Sabin (1977): The Use of Piecewise Forms for the Numerical Representation of Shape. Thesis. Computer and Automation Institute, Hungarian Academy of Sciences.

  • R. F. Sarraga (1987):G 1 interpolation of generally unrestricted cubic Bézier curves, Comput. Aided Geom. Design,4(1–2):23–40.

    Google Scholar 

  • R. F.Sarraga (1988): Computer Modeling of Surfaces with Arbitrary Shapes. Technical Report GMR-6388, General Motors Research.

  • R. F. Sarraga (1989):Errata: G 1 interpolation of generally unrestricted cubic Bézier curves, Comput. Aided Geom. Design,6(2): 167–172.

    Google Scholar 

  • L. A. Shirman, C. H. Séquin (1987):Local surface interpolation with Bézier patches. Comput. Aided Geom. Design,4:279–295.

    Google Scholar 

  • J. J. van Wuk (1984):Bicubic patches for approximating non-rectangular control-point meshes. Comput. Aided Geom. Design,3(1): 1–13.

    Google Scholar 

  • M. Veron, G. Ris, J. Musse (1976):Continuity of biparametric surface patches. Comput. Aided Design8(4): 267–273.

    Google Scholar 

  • M. A.Watkins (1988):Problems in geometric continuity. Comput. Aided Design,20(8).

  • F. Yamaguchi (1988): Curves and Surfaces in Computer Aided Geometric Design Berlin: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Wolfgang Dahmen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, J. Smooth interpolation of a mesh of curves. Constr. Approx 7, 221–246 (1991). https://doi.org/10.1007/BF01888155

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01888155

AMS classification

Key words and phrases

Navigation