Skip to main content
Log in

Determination of the resistance in series with the membranes of giant axons

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Measurements of the resistance in series with the excitable membrane for giant axons of two different phylla (the squidLoligo pealii and the marine wormMyxicola infundibulum) were obtained. Efforts were made to take into account the errors introduced by the finite rise-time of the measuring apparatus. The series resistance value, obtained very quickly by the method described, may be used in setting the compensation potentiometer to offset this resistance in voltage-clamp measurements. Estimates of the resistance of the periaxonal tissue layer were made. Analyses were done on some of the problems involved in attempting to make an unambiguous determination of the series resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman, W. J., Jr., Dyro, F., Senft, J. P., 1966. Internally perfused axons: Effects of two different anions on ionic conductance.Science 151:1392

    PubMed  Google Scholar 

  • Adelman, W. J., Jr., Palti, Y., 1969. The effects of external potassium and long duration conditioning on the amplitude of sodium currents in giant axon of the squid,Loligo pealei.J. Gen. Physiol. 54:589

    PubMed  Google Scholar 

  • Adelman, W. J., Jr., Palti, Y., Senft, J. P., 1973. Potassium ion accumulation in a periaxonal space and its effect on the measurement of membrane potassium ion conductance.J. Membrane Biol. 13:387

    Google Scholar 

  • Adelman, W. J., Taylor, R. E., 1964. Effects of replacement of exteral sodium chloride with sucrose on membrane currents of the squid giant axon.Biophys. J. 4:451

    Google Scholar 

  • Binstock, L., Goldman, L., 1969. Current and voltage clamped studies onMyxicola giant axons: Effect of tetrodotoxin.J. Gen. Physiol. 54:730

    PubMed  Google Scholar 

  • Binstock, L., Goldman, L., 1971. Rectification in instantaneous potassium currentvoltage relations inMyxicola giant axons.J. Physiol. 217:517

    PubMed  Google Scholar 

  • Carpenter, D. O., Hovey, M. M., Bak, A. F., 1972. Intracellular conductivity measurements in giant neurons, axons and muscle fibers. Society for Neuroscience, Second Annual Meeting (Abstr.)

  • Cole, K. S., 1968. Membranes, Ions and Impulses. University of California Press, Berkeley

    Google Scholar 

  • Cole, K. S., Moore, J. W., 1960. Ionic current measurements in the squid giant axon membrane.J. Gen. Physiol. 44:123

    PubMed  Google Scholar 

  • Cuervo, L. A., Adelman, W. J., Jr., 1970. Equilibrium and kinetic properties of the interaction between tetrodotoxin and the excitable membrane of the squid giant axon.J. Gen. Physiol. 55:309

    PubMed  Google Scholar 

  • Curtis, H. J., Cole, K. S., 1938. Transverse electric impedance of the squid giant axon.J. Cell. Comp. Physiol. 21:757

    Google Scholar 

  • Fishman, H. M., 1973. Low impedance capillary-electrode for wideband recording of membrane potential in large axons.Trans. BME 20(5):380

    Google Scholar 

  • FizHugh, R., Cole, K. S., 1973. Voltage and current clamp transients with membrane dielectric loss.Biophys. J. 13:1125

    Google Scholar 

  • Frankenhaeuser, B., Hodgkin, A. L., 1956. The after-effects of impulses in the giant nerve fibres ofLoligo.J. Physiol. 131:341

    PubMed  Google Scholar 

  • Frankenhaeuser, B., Huxley, A. F., 1964. The action potential in the myelinated nerve fibre ofXenopus laevis as computed on the basis of voltage clamp data.J. Physiol. 171:302

    PubMed  Google Scholar 

  • Goldman, L., Schauf, C. L., 1972. Inactivation of the sodium current inMyxicola giant axons: Evidence for coupling to the activation process.J. Gen. Physiol. 19:659

    Google Scholar 

  • Goldman, L., Schauf, C. L., 1973. Quantitative description of sodium and potassium currents and computer action potentials inMyxicola giant axons.J. Gen. Physiol. 61:361

    PubMed  Google Scholar 

  • Hodgkin, A. L., Huxley, A. F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. 117:500

    PubMed  Google Scholar 

  • Hodgkin, A. L., Huxley, A. F., Katz, B., 1952. Measurement of current-voltage relations in the membrane of the giant axon ofLoligo.J. Physiol. 116:424

    PubMed  Google Scholar 

  • Hoyt, R. C., Adelman, W. J., Jr., 1970. Sodium inactivation. Experimental tests of two models.Biophys. J. 10:610

    PubMed  Google Scholar 

  • Taylor, R. E., 1965. Impedance of the squid axon membrane.J. Cell. Comp. Physiol. 66:21

    Google Scholar 

  • Taylor, R. E., Moore, J. W., Cole, K. S. 1960. Analysis of certain errors in squid axon voltage clamp measurements.Biophys. J. 1:161

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binstock, L., Adelman, W.J., Senft, J.P. et al. Determination of the resistance in series with the membranes of giant axons. J. Membrain Biol. 21, 25–47 (1975). https://doi.org/10.1007/BF01941060

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01941060

Keywords

Navigation