Skip to main content
Log in

Psychrophilic and psychrotrophic microorganisms

  • Published:
Experientia Aims and scope Submit manuscript

Summary

Psychrophilic and psychrotrophic microorganisms have the ability to grow at 0°C. Psychrotrophic microorganisms have a maximum temperature for growth above 20°C and are widespread in natural environments and in foods. Psychrophilic microorganisms have a maximum temperature for growth at 20°C or below and are restricted to permanently cold habitats. This ability to grow at low temperature may be correlated with a lower temperature characteristic than that of the mesophiles, an increasing proportion of unsaturated fatty acids in the lipid phase of the cell membrane, which makes it more fluid, and a protein conformation functional at low temperature. The relatively low maximum temperature of growth for these microorganisms is often considered to be due to the thermolability of one or more essential cellular components, particularly enzymes, while some degradative activities are enhanced, resulting in an exhaustion of cell energy, a leakage of intracellular substances or complete lysis. Psychrotrophic microorganisms are well-known for their degradative activities in foods. Some are pathogenic or toxinogenic for man, animals or plants. However in natural microbial ecosystems psychrotrophic and psychrophilic microorganisms can play a large role in the biodegradation of organic matter during cold seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alsobrook, D., Larkin, J. M., and Seag, M. W., Effect of temperature on the cellular integrity of Bacillus psychrophilus. Can. J. Microbiol.18 (1972) 1671–1678.

    Article  CAS  PubMed  Google Scholar 

  2. Baross, J. A., and Morita, R. Y., Microbial life at low temperatures: Ecological aspects, in: Microbial Life in Extreme Environments, pp. 9–71. Ed. D. J. Kushner. Academic Press, London 1978.

    Google Scholar 

  3. Bobier, S. A., Ferronio, G. D., and Inniss, W. E., Protein synthesis by the psychrophiles Bacillus psychrophilus and Bacillus insolitus. Can. J. Microbiol.18 (1972) 1837–1843.

    Article  CAS  PubMed  Google Scholar 

  4. Brock, T. D., Biology of Microorganisms, 3rd edn. Prentice-Hall, New Jersey 1979.

    Google Scholar 

  5. Buchanan, R. E., and Gibbons, N. E., Bergey's Manual of Determinative Bacteriology, 8th edn. Williams and Wilkins, Baltimore 1974.

    Google Scholar 

  6. Buttiaux, R., Microbiologie et décongélation. Revue gén. Froid6 (1973) 591–592.

    Google Scholar 

  7. Canillac, N., Croissance et composition lipidique d'Arthrobacter aux basses températures. Thèse 3ème Cycle, Lyon 1976.

  8. Canillac, N., Pommier, M. T., and Gounot, A. M., Effet de la température d'incubation sur la composition lipidique de Corynébactériacées du genre Arthrobacter. Can. J. Microbiol.28 (1982) 284–290.

    Article  CAS  Google Scholar 

  9. D'Aoust, J. Y., and Kushner, D. J., Structural changes during lysis of psychrophilic marine bacterium. J. Bact.108 (1971) 916–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Farrell, J., and Rose, A. H., Temperature effects on microorganisms, in: Thermobiology, pp. 147–218. Ed. A. H. Rose. Academic Press, London 1967.

    Google Scholar 

  11. Ferroni, G. D., and Inniss, A. E., Thermally caused filament formation in the psychrophilic Bacillus insolitus. Can. J. Microbiol.19 (1973) 581–584.

    Article  CAS  PubMed  Google Scholar 

  12. Forster, J., Über einige Eigenschaften leuchtender Bakterien. Zentbl. Bakt. ParasitKde2 (1887) 337–340.

    Google Scholar 

  13. Fulco, A. J., Biosynthesis of unsaturated fatty acids in bacilli. II Temperature dependent biosynthesis of polyunsaturated acids. J. biol. Chem.245 (1970) 2985–2990.

    Article  CAS  PubMed  Google Scholar 

  14. Gounot, A. M., Contribution à l'étude des bactéries des grottes froides. V Int. Kongr. Speläelogie Stuttgart 1969. Abh. Bd4, B23/1–6.

  15. Gounot, A. M., Effects of temperature on the growth of psychrophilic bacteria from glaciers. Can. J. Microbiol.22 (1976) 839–846.

    Article  CAS  PubMed  Google Scholar 

  16. Gounot, A. M., Novitsky, T. J., and Kushner, D. J., Effects of temperature on the macromolecular composition and fine structure of psychrophilic Arthrobacter species. Can. J. Microbiol.23 (1977) 357–362.

    Article  CAS  PubMed  Google Scholar 

  17. Guthrie, C., Nashimoto, H., and Nomura, M., Structure and function ofE. coli ribosomes. VIII. Cold-sensitive mutants defective in ribosome assembly. Proc. natn. Acad. Sci. USA63 (1969) 384–392.

    Article  CAS  Google Scholar 

  18. Hanus, F. J., and Morita, R. Y., Significance of the temperature characteristic of growth. J. Bact.95 (1968) 736–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harder, W., and Veldkamp, H., A continuous culture study of an obligately psychrophilic Pseudomonas species. Arch. Mikrobiol.59 (1967) 123–130.

    Article  CAS  PubMed  Google Scholar 

  20. Harder, W., and Veldkamp, H., Competition of marine psychrophilic bacteria at low temperatures. Antonie van Leeuwenhoek37 (1971) 51–63.

    Article  CAS  PubMed  Google Scholar 

  21. Hölzinger, W. J., Die Auswirkungen von Sulfitzellstoff-Abwässern auf den Chemismus der Donau zwischen Ehingen und Ulm und die Massenentwicklung von Leptomitus lacteus (Röth) Ag. und Sphaerotilus natans. Kütz. Arch. Hydrobiol.2/3 suppl. 52 (1978) 241–311.

    Google Scholar 

  22. Ingraham, J. L., Growth of psychrophilic bacteria. J. Bact.76 (1958) 75–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ingraham, J. L., and Stokes, J. L., Psychrophilic bacteria. Bact. Rev.23 (1959) 97–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Inniss, W. E., Interaction of temperature and psychrophilic microorganisms. A. Rev. Microbiol.29 (1975) 445–465.

    Article  CAS  Google Scholar 

  25. Inniss, W. E., and Ingraham, J. L., Microbial life at low temperatures: Mechanisms and molecular aspects, in: Microbial Life in Extreme Environments, pp. 73–104. Ed. D. J. Kushner. Academic Press, London 1978.

    Google Scholar 

  26. Kawamoto, S., Kojima, K., Hanada, T., Iokuyama, S., Yashima, S., and Eguchi, Y., Cold resistant mutants of Escherichia coli. Agric. Biol. Chem.48 (1984) 1097–1101.

    CAS  Google Scholar 

  27. Law, B. A., Reviews of the progress of dairy science: enzymes of psychrotrophic bacteria and their effects in milk and milk products. J. Dairy Res.46 (1979) 573–588.

    Article  CAS  Google Scholar 

  28. Luisetti, J., and Gaignard, J. L., Gel de printemps et bactéries glaçogènes. Arboric fruit.375 (1985) 46–48.

    Google Scholar 

  29. Maki, L. R., Galyan, E. L., Chang-Chien, M., and Caldwell, D. R., Ice nucleation induced by Pseudomonas syringae. Appl. Microbiol.28 (1974) 256–259.

    Article  Google Scholar 

  30. Malcolm, N. L., Subunit structure and function of Micrococcus cryophilus glutamyl transfer RNA synthetase. Biochim. biophys. Acta190 (1969) 347–357.

    Article  CAS  PubMed  Google Scholar 

  31. Marr, A. G., and Ingraham, J. L., Effect of temperature on the composition of fatty acids in Escherichia coli. J. Bact.84 (1962) 1260–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McGibbon, L., and Russel, N. J., The turnover of phospholipids in the psychrophilic bacterium Micrococcus cryophilus during adaptation to changes in growth temperature. J. gen. Microbiol.131 (1985) 2293–2302.

    CAS  Google Scholar 

  33. Morita, R. Y., Psychrophilic bacteria. Bact. Rev.39 (1975) 144–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nash, C. H., Grant, D. W., and Sinclair, N. A., Thermolability of protein synthesis in a cell-free system from the obligately psychrophilic yeast Candida gelida. Can. J. Microbiol.15 (1969) 339–343.

    Article  CAS  PubMed  Google Scholar 

  35. O'Donovan, G. A., and Ingraham, J. L., Cold-sensitive mutants of Escherichia coli resulting from increased feedback inhibition. Proc. natn. Acad. Sci. USA54 (1965) 451–457.

    Article  CAS  Google Scholar 

  36. Olsen, R. H., and Metcalf, E. S., Conversion of mesophilic to psychrophilic bacteria. Science162 (1968) 1288–1289.

    Article  CAS  PubMed  Google Scholar 

  37. Pacha, R. E., Characteristic of Cytophaga psychrophila (Borg) isolated during outbreaks of bacterial cold-water disease. Appl. Microbiol.16 (1968) 97–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Piton, C., and Richard, J., Détermination du taux et de la nature des Pseudomonas psychrotrophes intervenant dans les deux sources principales de contamination microbienne du lait à la ferme: la peau des mamelles et le matériel de traite. Sci. Alim.5 (1985) 13–16.

    Google Scholar 

  39. Potier, P., Hipkiss, A. R., and Kushner, D. J., Protein turnover in a psychrotrophic bacterium. Archs Microbiol.142 (1985) 28–33.

    Article  CAS  Google Scholar 

  40. Punsola, L., and Guarro, J., Keratinomyces ceretanicus sp. nov. a psychrophilic dermatophyte from soil. Mycopathologia85 (1984) 185–190.

    Article  CAS  PubMed  Google Scholar 

  41. Rizk, J., Accidents transfusionnels d'origine bactérienne. Méthodes de prévention. Thèse Doct. Med., Lyon 1985.

  42. Russel, N. J., The regulation of membrane fluidity in bacteria by acyl chain length changes, in: Biomembranes, vol. 12. Membrane Fluidity, pp. 329–347. Eds M. Kates and L. A. Manson. Plenum, New York 1984.

    Chapter  Google Scholar 

  43. Schmidt-Nielsen, S., Über einige psychrophile Mikroorganismen und ihr Vorkommen. Zentbl. Bakt. ParasitKde9 (1902) 145–147.

    Google Scholar 

  44. Shaw, M. K., Effect of abrupt temperature shift on the growth of mesophilic and psychrophilic yeasts. J. Bact.93 (1967) 1332–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stokes, J. L., General biology and nomenclature of psychrophilic microorganisms, in: Recent Progress in Microbiology, pp. 187–192. University of Toronto Press, Toronto 1963.

    Chapter  Google Scholar 

  46. Svensson, B. H., Different temperature optima for methane formation when enrichments form acid peat are supplemented with acetate or hydrogen. Appl. environ. Microbiol.48 (1984) 389–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tai, P. C., and Jackson, H., Growth and respiration of an obligate psychrophile, Micrococcus cryophilus, and its mesophilic mutants. Can. J. Microbiol.15 (1969) 1151–1155.

    Article  CAS  PubMed  Google Scholar 

  48. Tai, P. C., Kessler, D. P., and Ingraham, J. L., Cold sensitive mutations in Salmonella typhimurium which affects ribosome synthesis. J. Bact.97 (1969) 1298–1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ward, E. W. B., Temperature-induced changes in the hyphal morphology of the psychrophile Sclerotinia borealis. Can. J. Bot.46 (1968) 524–525.

    Article  Google Scholar 

  50. Westlake, D. W., Jobson, A., Phillippe, R., and Cook, F. D., Biodegradability and crude oil composition. Can. J. Microbiol.20 (1974) 915–928.

    Article  CAS  PubMed  Google Scholar 

  51. Whitman, P. A., and Marshall, R. T., Isolation of psychrophilic bacteriophage-host systems from refrigerated food products. Appl. Microbiol.22 (1971) 220–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gounot, A.M. Psychrophilic and psychrotrophic microorganisms. Experientia 42, 1192–1197 (1986). https://doi.org/10.1007/BF01946390

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01946390

Key words

Navigation