Skip to main content
Log in

Determination of normal stress differences in steady shear flow

II. Flow birefringence, viscosity, and normal stress data for a polyisobutene liquid

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

Five normal stress, two viscosity, and two flow birefringence measurements have been made with a 2% solution of polyisobutene (M w =4.5× 106) in a polyisobutene liquid (M w = 400, viscosity = 0.25 Poise) at 25 °C at shear rates in the range 1 to 30 sec−1 using apparatus listed in table 1. Values forp 11 −p 22 obtained from (a) extinction angle and shear stress, and from (b) total thrust in a cone- and-plate apparatus are in excellent agreement. From these values ofp 11p 22 and values ofp 11+p 22−2p 33 (obtained from pressure gradients in a cone- and-plate apparatus), values ofp 33p 22 are derived which are positive and small [<0.07 (p 11p 22)].

Between these values ofp 33p 22 and values of rim pressure, there is a discrepancy which is attributed to pressure contributions from (i) flow in the ‘sea’ of liquid outside the rotating cone, and (ii) perturbations in shear flow caused by the small holes used in pressure measurements. For small gap angles, (i) is negligible and the value ofpH [contribution (ii)] is deduced from the data.pH is large (about −2 ¦p 21¦) and negative. These values ofpH, p 11p 22, andp 22p 33 are used to predict successfully the values of pressure gradient in a plate- and-plate system [2.13]. The values ofp 33p 22 are however, about three times smaller than values derived from measurements ofdF/dc, whereF=total thrust in a cone- and-plate apparatus whenc=distance between plate and cone apex.

Zusammenfassung

Mit der Apparatur nach Abb. 1 wurden jeweils die Normalkraft fünfmal, die Viskosität zweimal und die Strömungsdoppelbrechung gemessen. Verwendet wurde eine 2% Lösung von Polyisobutan (M w ≈ 4,5× 106) in flüssigem Polyisobutan (M w ≈ 400,n s =0,25P) bei 25 °C und Deformationsgeschwindigkeiten im Bereich vonG=1---30 s−1. Die Wertep 11p 22, die a) aus dem Auslöschungswinkel und der Scherkraft und b) aus der Normalkraft in einem Kegel-Platte-Gerät gewonnen wurden, stimmen hervorragend überein. Aus diesen Wertenp 11p 22 und aus Wertenp 11p 22-2p 33 (gewonnen aus den Druckgradienten im Kegel-Platte-Gerät) werden Wertep 33p 22 abgeleitet. Diese sind klein (<0,07 (p 11p 22) und positiv.

Es besteht ein Unterschied zwischen den Wertenp 33-p 22 und dem Randdruck. Die Ursache dafür sind Druck-einflüsse von (i) Strömung in der Flüssigkeit außerhalb des sich drehenden Kegels und (ii) Störungen in der Scherströmung als Folge der kleinen Bohrungen für die Druckmessungen. Für kleine Spaltwinkel ist (i) vernachlässigbar und der WertpH (Druckeinfluß (ii)) wird aus den Versuchswerten gewonnen. Die WertepH sind groß (etwa −2 ¦p 21¦) und negativ.

Mithilfe der WertepH, p 11p 22 undp 22p 33 können die Druckgradienten in einem Platte-Platte-System gut vorausgesagt werden [2.13]. Jedoch sind die Wertep 33p 22 etwa dreimal kleiner als solche, die aus der Messung vondF/dc gewonnen wurden, wobeiF die Normalkraft im Kegel-Platte-Gerät ist undc der Abstand zwischen Konusspitze und Platte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Oy 1 y 2 y 3 :

Local rectangular Cartesian coordinate system;Oy 1 tangential to line of shear;Oy 2 normal to shearing surface

G :

Shear rate (a non-zero principal value of the rate-of-strain tensor). [In rectilinear shear flow, velocity componenteυ i are given byυ 1=G y 2,υ 2=υ 3=0, withG>0.]

r :

Distance of a typical point in the plate from axis of rotation

R :

Radius of rotating cone or plate

r 0,r i :

Radii of outer and inner cylinders

θ0 :

Gap angle (cone semi-vertical angle = 1/2π−θ 0)

h :

Separation between cone and plate at distancer from axis

c:

Value ofh atr=0. (distance between plate and point of intersection of cone generators)

z 0 :

Separation between plate and plate

p :

Cartesian stress tensor

pij :

Components ofp referred toOy 1 y 2 y 3 (=physical components) (p ii >0 for a tensile normal stress component) (i, j=1, 2, 3)

pI,pII:

Principal values ofp associated with principal axes inOy 1 y 2

x′ :

Inclination of principal stress axis I (lying in positive quadrant of0y 1 y 2) toOy 1

Δp :

pI−pII

p a :

Atmospheric pressure

p (r) :

Pressure on plate at point distantr from axis of rotation, as measured by means of liquid-filled hole in the plate

pH :

(pressure attributed to flow perturbation caused byhole used to measure pressure) (pH ≡ p+p 22)

η :

p 21/G (= viscosity of solution)

η s :

viscosity of solvent

F :

Total thrust on cone rotating at angular velocityΩ 0 minus corresponding thrust at zero angular velocity

Ω 0 :

Angular velocity of rotating member

n:

Refractive index tensor (defined as (ϰ/ϰ0)1/2), where ϰ and ϰ0 1 denote permittivity tensors for the flowing solution and for free space respectively)

nI,nII:

Principal values ofn corresponding to principal axes I, II lying in plane0 y 1 y 2

Δn :

nI−nII

χ :

Inclination of principal axis I toOy 1 (axis I lies in positive quadrant of planeOy 1 y 2). (χ=‘extinction angle’)

1 :

Unit tensor

ϱ :

Density of liquid

References

  1. Lipson, J. M. andA. S. Lodge, Rheol. Acta (paper I) R. A. 363.

  2. Kaye, A. andD. W. Saunders, J. Sci. Instrum.41, 139 (1964).

    Article  Google Scholar 

  3. Adams, N. andR. Jackson, J. Sci. Instrum.44, 461 (1967).

    Article  Google Scholar 

  4. Jackson, R. andA. Kaye, Brit. J. Appl. Phys.17, 1355 (1966).

    Article  Google Scholar 

  5. Adams, N. andA. S. Lodge, Phil. Trans. Roy. Soc. A265, 149 (1964).

    Google Scholar 

  6. Broadbent, J. M., A. Kaye, A. S. Lodge, andD. G. Vale, Nature (London)217, 55 (1968).

    Google Scholar 

  7. Lodge, A. S., Elastic Liquids (London-New York 1964), Ch. 9.

  8. Oldroyd, J. G., Proc. Roy. Soc. A200, 523 (1950).

    Google Scholar 

  9. Coleman, B. D., H. Markovitz, andW. Noll, Viscometric Flows of Non-Newtonian Fluids (Berlin-Heidelberg-New York 1966).

  10. Kaye, A., Flow Problems with Rheologioal Equations of State, (D. Phil. Thesis, University of Oxford 1965) p. 105.

  11. Lodge, A. S., Nature (London)176, 838 (1955).

    Google Scholar 

  12. Philippoff, W., J. Appl. Phys.27, 984 (1956).

    Article  Google Scholar 

  13. Philippoff, W., F. H. Gaskins, andJ. G. Brodnyan, J. Appl. Phys.28, 1118 (1957).

    Article  Google Scholar 

  14. Janeschitz-Kriegl, H., Makromol. Chem.33, 55 (1959).

    Article  Google Scholar 

  15. Zimm, B. H., J. Chem. Phys.24, 269 (1956).

    Article  Google Scholar 

  16. Lodge, A. S., Kolloid-Z.171, 46 (1960).

    Article  Google Scholar 

  17. den Otter, J. L., Dynamic Properties of Some Polymeric Systems, (Doctoral Thesis, University of Leyden 1967).

  18. Thom, A. andC. J. Apelt, Rep. Memor. Aero. Res. Coun. no. 3090 (London, H. M.S.O. 1958).

    Google Scholar 

  19. Greensmith, H. W. andR. S. Rivlin, Phil. Trans. Roy. Soc. A245, 399 (1953).

    Google Scholar 

  20. Markovitz, H., Phys. Fluids8, 200 (1965).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaye, A., Lodge, A.S. & Vale, D.G. Determination of normal stress differences in steady shear flow. Rheol Acta 7, 368–379 (1968). https://doi.org/10.1007/BF01984855

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01984855

Keywords

Navigation