Skip to main content
Log in

Perturbation theory and backward error forAX−XB=C

  • Part II Numerical Mathematics
  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Because of the special structure of the equationsAX−XB=C the usual relation for linear equations “backward error = relative residual” does not hold, and application of the standard perturbation result forAx=b yields a perturbation bound involving sep (A, B)−1 that is not always attainable. An expression is derived for the backward error of an approximate solutionY; it shows that the backward error can exceed the relative residual by an arbitrary factor. A sharp perturbation bound is derived and it is shown that the condition number it defines can be arbitrarily smaller than the sep(A, B)−1-based quantity that is usually used to measure sensitivity. For practical error estimation using the residual of a computed solution an “LAPACK-style” bound is shown to be efficiently computable and potentially much smaller than a sep-based bound. A Fortran 77 code has been written that solves the Sylvester equation and computes this bound, making use of LAPACK routines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Anderson, Z. Bai, C. H. Bischof, J. W. Demmel, J. J. Dongarra, J. J. Du Croz, A. Greenbaum, S. J. Hammarling, A. McKenney, S. Ostrouchov, and D. C. Sorensen,LAPACK Users' Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1992.

    Google Scholar 

  2. M. Arioli, J. W. Demmel, and I. S. Duff,Solving sparse linear systems with sparse backward error, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 165–190.

    Google Scholar 

  3. Z. Bai and J. W. Demmel,On a direct algorithm for computing invariant subspaces with specified eigenvalues, Technical Report CS-91-139, Department of Computer Science, University of Tennessee, Nov. 1991. (LAPACK Working Note #38).

  4. J. B. Barlow, M. M. Monahemi, and D. P. O'Leary,Constrained matrix Sylvester equations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1–9.

    Google Scholar 

  5. R. H. Bartels and G. W. Stewart,Algorithm 432: Solution of the matrix equation AX+XB=C, Comm. ACM, 15 (1972), pp. 820–826.

    Google Scholar 

  6. R. Byers,A LINPACK-style condition estimator for the equation AX − XB T =C, IEEE Trans. Automat. Control, AC-29 (1984), pp. 926–928.

    Google Scholar 

  7. K. Datta,The matrix equation XA−BX=R and its applications, Linear Algebra and Appl., 109 (1988), pp. 91–105.

    Google Scholar 

  8. J. J. Du Croz and N. J. Higham,Stability of methods for matrix inversion, IMA Journal of Numerical Analysis, 12 (1992), pp. 1–19.

    Google Scholar 

  9. G. H. Golub, S. Nash, and C. F. Van Loan,A Hessenberg-Schur method for the problem AX+XB=C, IEEE Trans. Automat. Control, AC-24 (1979), pp. 909–913.

    Google Scholar 

  10. G. H. Golub and C. F. Van Loan,Matrix Computations, Johns Hopkins University Press, Baltimore, Maryland, second ed., 1989.

    Google Scholar 

  11. W. W. Hager,Condition estimates, SIAM J. Sci. Stat. Comput., 5 (1984), pp. 311–316.

    Google Scholar 

  12. J. Z. Hearon,Nonsingular solutions of TA−BT=C, Linear Algebra and Appl., 16 (1977), pp. 57–63.

    Google Scholar 

  13. H. V. Henderson and S. R. Searle,The vec-permutation matrix, the vec operator and Kronecker products: A review, Linear and Multilinear Algebra, 9 (1981), pp. 271–288.

    Google Scholar 

  14. G. Hewer and C. Kenney,The sensitivity of the stable Lyapunov equation, SIAM J. Control and Optimization, 26 (1988), pp. 321–344.

    Google Scholar 

  15. D. J. Higham and N. J. Higham,Componentwise perturbation theory for linear systems with multiple right-hand sides, Numerical Analysis Report No. 200, University of Manchester, England, July 1991. To appear in Linear Algebra and Appl.

    Google Scholar 

  16. ——,Backward error and condition of structured linear systems, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 162–175.

    Google Scholar 

  17. N. J. Higham,Computing real square roots of a real matrix, Linear Algebra and Appl., 88/89 (1987), pp. 405–430.

    Google Scholar 

  18. ——,FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation (Algorithm 674), ACM Trans. Math. Soft., 14 (1988), pp. 381–396.

    Google Scholar 

  19. ——,Experience with a matrix norm estimator, SIAM J. Sci. Stat. Comput., 11 (1990), pp. 804–809.

    Google Scholar 

  20. A. S. Hodel,Recent applications of the Lyapunov equation in control theory, Manuscript, Dept. of Electrical Engineering, Auburn University, 1991. To appear in Proceedings of the IMACS International Symposium on Iterative Methods in Linear Algebra.

  21. R. A. Horn and C. R. Johnson,Topics in Matrix Analysis, Cambridge University Press, 1991.

  22. D. Y. Hu and L. Reichel,Krylov subspace methods for the Sylvester equation, Linear Algebra and Appl., 172 (1992), pp. 283–314.

    Google Scholar 

  23. B. Kågström and P. Poromaa,Distributed and shared memory block algorithms for the triangular Sylvester equation with sep−1 estimators, SIAM J. Matrix Anal., 13 (1992), pp. 90–101.

    Google Scholar 

  24. J. L. Rigal and J. Gaches,On the compatibility of a given solution with the data of a linear system, J. Assoc. Comput. Mach., 14 (1967), pp. 543–548.

    Google Scholar 

  25. R. D. Skeel,Iterative refinement implies numerical stability for Gaussian elimination, Math. Comp., 35 (1980), pp. 817–832.

    Google Scholar 

  26. G. Starke and W. Niethammer,SOR for AX−XB=C, Linear Algebra and Appl., 154–156 (1991), pp. 355–375.

    Google Scholar 

  27. G. W. Stewart,Error and perturbation bounds for subspaces associated with certain eigenvalue problems, SIAM Review, 15 (1973), pp. 727–764.

    Google Scholar 

  28. J. M. Varah,On the separation of two matrices, SIAM J. Numer. Anal., 16 (1979), pp. 216–222.

    Google Scholar 

  29. E. L. Wachspress,Iterative solution of the Lyapunov matrix equation, Appl. Math. Lett. 1 (1988), pp. 87–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nuffield Science Research Fellow. This work was carried out while the author was a visitor at the Institute for Mathematics and its Applications, University of Minnesota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higham, N.J. Perturbation theory and backward error forAX−XB=C . BIT 33, 124–136 (1993). https://doi.org/10.1007/BF01990348

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01990348

AMS (MOS) subject classifications

Key words

Navigation