Skip to main content
Log in

Current capabilities for modelling turbulence in industrial flows

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

This paper summarizes some of the more widely applied or promising schemes for computing heat and momentum transport in industrially relevant flows. Such flows typically involve complex flow domains, severe pressure gradients and regions of flow separation and reattachment. Models tuned by reference to equilibrium, simple shear flows cannot in general be relied upon to predict accurately the effects of these complexities on the transport processes. The main conclusions drawn are that second-moment closure offers a far more reliable basis for computing non-equilibrium turbulent flows than eddy-viscosity schemes, especially in flows with very complex strain fields or those substantially affected by external force fields. Moreover, where significant variations in shear stress occur across the near-wall viscosity-affected sublayer, the usual practice of employing wall functions needs to be replaced by at least a two-equation model in order to capture, even qualitatively, the consequent effects on wall heat transfer or skin friction coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

measure of ‘flatness’ of turbulent stress (equation (15))

A 2,A 3 :

second and third invariants ofa ij

a ij :

dimensionless anisotropic Reynolds stress\({{\left( {\overline {u_i u_j } - \tfrac{1}{3}\delta _{ij} \overline {u_k u_k } } \right)} \mathord{\left/ {\vphantom {{\left( {\overline {u_i u_j } - \tfrac{1}{3}\delta _{ij} \overline {u_k u_k } } \right)} k}} \right. \kern-\nulldelimiterspace} k}\)

C p :

specific heat at constant pressure

dϕ :

net diffusion rate of quantityφ

F ij :

rate of creation of\(\overline {u_i u_j } \) by Coriolis forces

G ij :

rate of creation of\(\overline {u_i u_j } \) by (other) body forces

G k :

rate of creation ofk by body forces

k :

turbulent kinetic energy

l :

turbulent length scalek 3/2/ε

l e :

equilibrium length scale

Nu:

Nusselt number

P ij :

rate of creation of\(\overline {u_i u_j } \) by shear

P k :

rate of creation ofk by shear

S ɛ :

source term inε equation

U :

streamwise velocity component

U B :

bulk velocity (pipe flow)

U i :

mean velocity inx i direction

U max :

maximum velocity

\(\overline {u_i u_j } \) :

kinematic Reynolds stress

\(\overline {u_i \theta } \) :

turbulent scalar flux in directionx i

x :

streamwise coordinate

x i :

Cartesian coordinate

y :

coordinate normal to stream flow with origin at wall

β i :

buoyancy vector (product of volumetric expansion coefficient times gravitational acceleration vector)

ΔΘ :

temperature above wall value

ε :

turbulence energy dissipation rate

ε ij :

viscous dissipation rate of\(\overline {u_i u_j } \)

Θ :

mean temperature

θ :

fluctuating temperature

ν t :

turbulent viscosity

ρ :

density

σ :

molecular Prandtl/Schmidt number

σϕ :

turbulent Prandtl number for diffusion ofφ

τ w :

wall shear stress

Φ ij :

pressure strain correlation

Φ ij1,Φ ij2,Φ ij3 :

turbulence, mean-strain and force-field parts ofφ ij

Φ ijw :

wall-reflection contributions toΦ ij

Ω k :

angular velocity vector in directionx k

References

  1. Hutton, A.G. and Szczepura, R.T.: Turbulent flow and heat transfer in a sudden pipe expansion: a comparison of current models of turbulence.CEGB Rep. TPRD/B/0926/R87 (1987).

  2. Launder, B.E.: On the computation of convective heat transfer in complex turbulent flows.J. Heat Transfer 110 (1988) 1112–1128.

    Google Scholar 

  3. Launder, B.E.: The prediction of force-field effects on turbulent shear flows via second-moment closure.Advances in Turbulence — 2, Springer, Berlin (1989) 338–358.

    Google Scholar 

  4. Launder, B.E.: Second moment closure, present ... and future?Int. J. Heat Fluid Flow 10 (1989) 282–300.

    Google Scholar 

  5. Ng, K.H. and Spalding, D.B.: Some applications of a model of turbulence to boundary layers near walls.Phys. Fluids 15 (1972).

  6. Spalding, D.B.: Thek-W model of turbulence.Imperial College Heat Transfer Section Rep. EF/TN/A/16 (1969).

  7. Saffman, P. and Wilcox, D.C.:AIAAJ 12 (1974) 541–546.

    Google Scholar 

  8. Kolmogorov, A.N.: Equations of turbulent motion of an incompressible turbulent fluid.Izv. Akad. Nank SSR Ser. Phys. VI, No. 1–2 (1942) 56.

  9. Wilcox, D.C.:AIAAJ 26 (1988) 1299–1310.

    Google Scholar 

  10. Rodi, W. and Scheuerer, G.: Scrutinizing thek-ε model under adverse pressure gradient conditions.Proc. 4th Symp. Turbulent Shear Flows 2.8–2.14, Karlsruhe (1983).

  11. Yap, C.R.: Turbulent heat and momentum transfer in recirculating and impinging flows. PhD Thesis, Faculty of Technology, University of Manchester (1987).

  12. Loizou, P.A.: Computation and measurement of turbulent flow through idealized turbine blade passages. PhD Thesis, Faculty of Technology, University of Manchester (1990).

  13. Cotton, M.A. and Jackson, J.D.: Calculation of turbulent mixed convection using a low-Reynolds numberk-ε model.Proc. 6th Turb. Shear Flow Symp, Paper 9-6, Toulouse (1987).

  14. Jackson, J.D., Cotton, M.A., Yu, L.S.L. and Rouai, N.M.: Experimental and computational studies of turbulent forced and mixed convection heat transfer to water in a vertical pipe.Int. Symp. Engrg. Turbulence Modelling and Measurements, Dubrovnik (1990).

  15. Jones, W.P. and Launder, B.E.:Int. J. Heat Mass Transfer 15 (1972) 301.

    Google Scholar 

  16. Launder, B.E. and Sharma, B.I.:Lett Heat Mass Transfer 1 (1974) 131–138.

    Google Scholar 

  17. Kays, W.M. and Moffat, R.J.: Behaviour of transpired turbulent boundary layers.Studies in Convection I, Academic, London (1975).

    Google Scholar 

  18. Rebollo, R.M.: Analytical and experimental investigation of a turbulent mixing layer of different gases in a pressure gradient. PhD Thesis, Cal. Inst. Tech. (1973).

  19. El Tahry, S., Gosman, A.D. and Launder, B.E.: The two-and three-dimensional dispersal of a passive scalar in a turbulent boundary layer.Int. J. Heat Mass Transfer 24 (1981) 35–46.

    Google Scholar 

  20. Huang, P.G. and Leschziner, M.A.: Stabilization of recirculating flow computations performed with second-moment closures and third-order discretization.Proc. 5th Symp. Turbulent Shear Flows, Cornell, 20.7–20.12 (1985).

  21. Daly, B.J.:J. Fluid Mech. 64 (1974) 129.

    Google Scholar 

  22. Rotta, J.C.:J. Phys. 129 (1951) 547.

    Google Scholar 

  23. Launder, B.E., Reece, G.J., Rodi, W.:J. Fluid Mech. 68 (1975) 537.

    Google Scholar 

  24. Fu, S., Launder, B.E. and Leschziner, M.A.: Modelling strongly swirling recirculating jet flows with Reynolds-stress transport closures.Proc. 6th Symp. Turb. Shear Flows, Paper 17.6, Toulouse (1987).

  25. Launder, B.E.:J. Fluid Mech. 67 (1975) 569.

    Google Scholar 

  26. Gibson, M.M. and Launder, B.E.:J. Fluid Mech. 86 (1978) 491.

    Google Scholar 

  27. Rodi, W.: A new algebraic relation for calculating the Reynolds stresses.ZAMM 56 (1975) 219.

    Google Scholar 

  28. Fu, S., Huang, P.G., Launder, B.E. and Leschziner, M.A.:ASME J. Fluids Eng., 110 (1988) 216–221.

    Google Scholar 

  29. Jones, W.P. and Manners, A.: The calculation of the flow through a two-dimensional faired diffuser. In:Turbulent Shear Flows-6, Springer, Heidelberg (1989) 18–31.

    Google Scholar 

  30. Stevens, S.J. and Fry, P.: Measurements of the boundary layer growth in annular diffusers.J. Aircraft 10 (1973) 73.

    Google Scholar 

  31. Hogg, S.I. and Leschziner, M.A.:Int. J. Heat Fluid Flow 10 (1989) 16.

    Google Scholar 

  32. So, R.M.C., Ahmed, S.A. and Mongia, H.C.: Jet characteristics in confined swirling flow.Expts. in Fluids 3 (1985) 221.

    Google Scholar 

  33. Baughn, J.W., Hoffman, M.A., Takahashi, R. and Launder, B.E.:ASME J. Heat Transfer 106 (1984) 789.

    Google Scholar 

  34. Choi, Y.D., Iacovides, H. and Launder, B.E.J. Fluids Eng. 111 (1989) 59.

    Google Scholar 

  35. Chang, S.M., Humphrey, J.A.C., Johnson, R.W. and Launder, B.E.: Turbulent heat transport in flow through a 180° bend of square cross-section.Proc. 4th Symp. on Turbulent Shear Flows, 6.20–6.25, Karlsruhe (1981).

    Google Scholar 

  36. Chang, S.M., Humphrey, J.A.C. and Modavi, H.:Physico-chemical hydrodynamics 4 (1983) 243.

    Google Scholar 

  37. Schumann, U.:Phys. Fluids 20 (1977) 721.

    Google Scholar 

  38. Lumley, J.L.:Adv. Appl. Mech. 18 (1978) 123.

    Google Scholar 

  39. Lumley, J.L. and Khajeh-Nouri, B.J.: Computational modeling of turbulent transport. In:Advances in Geophysics (Proc. 2nd IUGG-IUTAM Symp. on Atmospheric Diffusion in Environmental Pollution) 18A (1974) 169.

  40. Rodi, W.: A review of experimental data of uniform density free turbulent boundary layers. In: Launder, B.E. (ed.)Studies in Convection - I, Academic, London (1975) 79–165.

    Google Scholar 

  41. Wygnanski, I., Champagne, F. and Marasli, B.: On the large-scale structures in two-dimensional, small-deficit, turbulent wakes.J. Fluid Mech. 168 (1986) 31.

    Google Scholar 

  42. El Baz, A.R., Launder, B.E. and Nemouchi, Z.: On the prediction of memory effects in the turbulent plane wake.Open Forum, 7th Symp. on Turbulent Shear Flows, Stanford (1989).

  43. Cresswell, R., Haroutunian, V., Ince, N.Z., Launder, B.E. and Szczepura, R.T.: Measurement and modelling of buoyancy modified shear flows.Proc. 7th Turbulent Shear Flow Symp., Paper 12-4, Stanford (1989).

  44. UMIST:Proceedings of 4th CFD Colloquium (1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Launder, B.E. Current capabilities for modelling turbulence in industrial flows. Appl. Sci. Res. 48, 247–269 (1991). https://doi.org/10.1007/BF02008200

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02008200

Keywords

Navigation