Skip to main content
Log in

Salivary proline-rich proteins in mammals: Roles in oral homeostasis and counteracting dietary tannin

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

We review information on the structure of proline-rich proteins (PRPs), their various functions related to oral homeostasis and dietary tannin, and the structural basis of these functions. Consideration of the multifunctional nature of these salivary proteins helps explain both the subtle and large variations found in structure and secretion rates both within individuals and between species. We propose that the ancestral function of PRPs is in maintaining oral homeostasis and that counteracting dietary tannins by binding with them is a derived function. PRPs are effective in oral homeostasis at low secretion levels, whereas counteracting tannin depends on high secretion levels. In the dietary habits ranging from carnivores through omnivores to exclusively planteaters, the dietary nitrogen level is progressively reduced, and plant allelochemical intake, including tannins, increases. We suggest that during this evolution from meat-eater to plant-eater, there was some point in omnivory at which selective pressure from nitrogen limitations, arising from a low nitrogen/high tannin diet, became sufficiently great for the evolution of increased secretion level and diversification of PRPs for dealing with tannin. If this hypothesis is correct, carnivorous mammals should secrete low levels of PRPs for oral homeostasis, but should never secrete high levels, unless they are secondarily carnivorous. Omnivores consuming a diet of very little animal tissue but higher levels of tannin-containing foliage or fruit should generally have the capacity to produce high levels of salivary PRPs. Browsers and frugivores should also produce high levels of PRPs, but grazers may have reduced secretion rates depending on the antiquity of the dietary habit. This hypothesis is consistent with the limited information available on the abundance, type, and distribution of PRPs in mammals. Studies are suggested which would test the functional and evolutionary arguments presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous. 1983. Complete Book of Australian Mammals. Angus & Robertson Publishers, Melbourne.

  • Aoba, T., Moreno, E.C., andHay, D.I. 1984. Inhibition of apatite crystal growth by the aminoterminal segment of human salivary acidic proline-rich proteins.Calcif. Tissue Int. 36:651–658.

    PubMed  Google Scholar 

  • Artz, W.E., Bishop, P.D., Dunker, A.K., Schanus, E.G., andSwanson, B.G. 1987. Interaction of synthetic proanthocyanidin dimer and trimer with bovine serum albumin and purified bean globulin fraction G-1.J. Agric. Food Chem. 35:417–421.

    Google Scholar 

  • Asquith, T.N., andButler, L.G. 1986. Interactions of condensed tannins with selected proteins.Phytochemistry 25:1591–1593.

    Google Scholar 

  • Asquith, T.N., Uhlig, J., Mehansho, H., Putman, L., Carlson, D.M., andButler, L. 1987. Binding of condensed tannins to salivary proline-rich glycoproteins: The role of carbohydrate.J. Agric. Food Chem. 35:331–334.

    Google Scholar 

  • Austin, P.J., Suchar, L.A., Robbins, C.T., andHagerman, A.E. 1989. Tannin-binding proteins in saliva of deer and their absence in saliva of sheep and cattle.J. Chem. Ecol. 15:1335–1347.

    Google Scholar 

  • Beal, A.M. 1987. Amylase activity, protein and urea in saliva of the red kangaroo (Macropus rufus).Arch. Oral Biol. 32:825–832.

    PubMed  Google Scholar 

  • Beal, A.M. 1989a. Differences in salivary flow and composition among kangaroo species: Implications for digestive efficiency, pp. 189–195,in G. Grigg, P. Jarman, and I. Hume (eds.). Kangaroos, Wallabies and Rat-Kangaroos. Surrey Beatty & Sons Pty. Ltd., NSW, Australia.

    Google Scholar 

  • Beal, A.M. 1989b. The effect of beta-sympathomimetic stimulation on parotid salivation in the red kangaroo (Macropus rufus).Arch. Oral Biol. 34:355–363.

    PubMed  Google Scholar 

  • Beal, A.M. 1990. Secretion rates and composition of parotid saliva in the koala (Phascolarctos cinereus).J. Zool. London 221:261–274.

    Google Scholar 

  • Beal, A.M. 1991. Characteristics of parotid saliva from the common wombat (Vombatus ursinus).J. Zool. London 224:403–417.

    Google Scholar 

  • Beal, A.M. 1992. Relationships between plasma composition and parotid salivary composition and secretion rates in the potoroine marsupials,Aepyprymnus rufescens andPotorous tridactylus.J. Comp. Physiol. B 162:637–645.

    PubMed  Google Scholar 

  • Beeley, J.-A., Sweeney, D., Buchanan, M.L., Sarna, L., andKhoo, K.S. 1991. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of human parotid salivary proteins.Electrophoresis 12:1032–1041.

    PubMed  Google Scholar 

  • Bennick, A. 1982. Salivary proline-rich proteins.Mol. Cell. Biochem. 45:83–99.

    PubMed  Google Scholar 

  • Bennick, A., McLaughlin, A.C., Grey, A.A., andMadapallimatam, G. 1981. The location and nature of calcium-binding sites in salivary acidic proline-rich phosphoproteins.J. Biol. Chem. 256:4741–4746.

    PubMed  Google Scholar 

  • Bergey, E.J., Levine, M.J., Reddy, M.S., andBradway, S.D. 1986. Use of the photoaffinity cross-linking agentN-hydroxysuccinimidyl-4-azidosalicylic acid to characterize salivary-glycoprotein-bacterial interactions.Biochem. J. 234:43–48.

    PubMed  Google Scholar 

  • Butler, L.G., Riedl, D.J., Lebryk, D.G., andBlytt, H.J. 1984. Interaction of proteins with sorghum tannin: Mechanism, specificity and significance.JAOCS 61:916–920.

    Google Scholar 

  • Chou, P.Y., andFasman, G.D. 1974. Prediction of protein conformation.Biochemistry 13:222–245.

    PubMed  Google Scholar 

  • Clausen, T.P., Provenza, F.D., Burritt, E.A., Reichardt, P.B., andBryant, J.P. 1990. Ecological implication of condensed tannin structure: A case study.J. Chem. Ecol. 16:2381–2392.

    Google Scholar 

  • Clements, S., Mehansho, H., andCarlson, D.M. 1985. Novel multigene families encoding highly repetitive peptide sequences.J. Biol. Chem. 260:13471–13477.

    PubMed  Google Scholar 

  • Daughaday, W.H., Lowry, O.H., Rosebrough, N.J., andFields, W.S. 1952. Determination of cerebrospinal fluid protein with Folin reagent.J. Lab. Clin. Med. 39:663–665.

    PubMed  Google Scholar 

  • Dawes, C. 1976. Salivary secretion, pp. 516–527,in I. Kramer and B. Coben (eds.). Scientific Foundations of Dentists. William Heinemann Medical Books Ltd., London.

    Google Scholar 

  • Feeny, P.P. 1976. Plant apparency and chemical defense.Recent Adv. Phytochem. 10:1–40.

    Google Scholar 

  • Ferreira, F.D., Robinson, R., Hand, A.R., andBennick, A. 1992. Differential expression of proline-rich proteins in rabbit salivary glands.J. Histochem. Cytochem. 40:1393–1404.

    PubMed  Google Scholar 

  • Fleagle, J.G. 1988. Primate Adaptation and Evolution. Academic Press, Inc., Sydney.

    Google Scholar 

  • Gibbons, R.J., andHay, D.I. 1988. Human salivary acidic proline-rich proteins and statherin promote the attachment ofActinomyces viscosus LY7 to apatic surfaces.Infect. Immun. 56:439–445.

    PubMed  Google Scholar 

  • Gibbons, R.J., Hay, D.I., Cisar, J.O., andClark, W.B. 1988. Adsorbed salivary proline-rich protein 1 and statherin: Receptors for type 1 fimbriae ofActinomyces viscosus T14V-J1 on apatitic surfaces.Infect. Immun. 56:2990–2993.

    PubMed  Google Scholar 

  • Goldstein, J.L., andSwain, T. 1963. Changes in tannins in ripening fruits.Phytochemistry 2:371–383.

    Google Scholar 

  • Hagerman, A.E. 1989. Chemistry of tannin-protein complexation, pp. 323–333,in R.W. Hemingway and J.J. Karchesy (eds.). Chemistry and Significance of Condensed Tannins. Plenum Publishing, New York.

    Google Scholar 

  • Hagerman, A.E., andButler, L.G. 1978. Protein precipitation method for the quantitative determination of tannins.J. Agric. Food Chem. 26:809–812.

    Google Scholar 

  • Hagerman, A.E., andButler, L.G. 1981. The specificity of proanthocyanidin-protein interactions.J. Biol. Chem. 256:4494–4497.

    PubMed  Google Scholar 

  • Hagerman, A., andKlucher, K.M. 1986. Tannin-protein interactions, pp. 67–76,in V. Cody, E. Middleton, and J. Harborne (eds.). Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological, and Structure-Activity Relationships. Alan R. Liss, New York.

    Google Scholar 

  • Hagerman, A.E., andRobbins, C.T. 1993. Specificity of tannin-binding salivary proteins relative to diet selection by mammals.Can. J. Zool. 71:628–633.

    Google Scholar 

  • Haslam, E. 1979. Vegetable tannins, pp. 475–523,in T. Swain, J.B. Harborne, and C.F. Sumere (eds.). Biochemistry of Plant Phenolics (Recent Advances in Phytochemistry). Plenum Press, New York.

    Google Scholar 

  • Hatton, M.N., Loomis, R.E., Levine, M.J., andTabak, L.A. 1985. Masticatory lubrication. The role of carbohydrate in the lubricating property of a salivary glycoprotein-albumin complex.Biochem. J. 230:817–820.

    PubMed  Google Scholar 

  • Hay, D.I., andMoreno, E.C. 1989. Statherin and the acidic proline-rich proteins, pp. 131–150,in J.O. Tenovuo and D. Odont (eds.). Human Saliva: Clinical Chemistry and Microbiology. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Hay, D.I., Moreno, E.C., andSchlesinger, D.H. 1979. Phosphoprotein inhibitors of calcium phosphate precipitation from salivary secretions.Inorg. Perspect. Biol. Med. 2:271–285.

    Google Scholar 

  • Hay, D.I., Schluckebier, S.K., andMoreno, E.C. 1982. Equilibrium dialysis and ultrafiltration studies of calcium and phosphate binding by human salivary proteins. Implications for salivary supersaturation with respect to calcium phosphate salts.Calcif. Tissue Int. 34:531–538.

    PubMed  Google Scholar 

  • Hay, D.I., Smith, D.J., Schluckebier, S.K., andMoreno, E.C. 1984. Relationship between concentration of human salivary statherin and inhibition of calcium phosphate precipitation in stimulated human parotid saliva.J. Dent. Res. 63:857–863.

    PubMed  Google Scholar 

  • Hay, D.I., Carlson, E.R., Schluckebier, S.K., Moreno, E.C., andSchlesinger, D.H. 1987. Inhibition of calcium phosphate precipitation by human salivary acidic proline-rich proteins: Structure-activity relationships.Calcif. Tissue Int. 40:126–132.

    PubMed  Google Scholar 

  • Hay, D.I., Bennick, A., Schlesinger, D.H., Minaguchi, K., Madapallimattam, G., andSchluckebier, S.K. 1988. The primary structures of six human salivary proteins (PRP-1, PRP-2, PRP-3, PRP-4, PIF-s and PIF-f).Biochem. J. 255:15–21.

    PubMed  Google Scholar 

  • Henkin, R.I., Lippoldt, R.E., Bilstad, J., Wolf, R.O., Lum, C.K.L., andEdelhoch, H. 1978. Fractionation of human parotid saliva proteins.J. Biol. Chem. 253:7556–7565.

    PubMed  Google Scholar 

  • Kauffman, D.L., andKeller, P.J. 1979. The basic proline-rich proteins in human parotid saliva from a single subject.Arch. Oral Biol. 24:249–256.

    PubMed  Google Scholar 

  • Kauffman, D.L., Bennick, A., Blum, M., andKeller, P.J. 1991. Basic proline-rich proteins from human parotid saliva: relationships of the covalent structures of ten proteins from a single individual.Biochemistry 30:3351–3356.

    PubMed  Google Scholar 

  • Keller, P.J., Robinovich, M., Iversen, J., andKauffman, D.L. 1975. The protein composition of rat parotid saliva and secretory granules.Biochim. Biophys. Acta 379:562–570.

    PubMed  Google Scholar 

  • Kurten, B., andAnderson, E. 1980. Pleistocene Mammals of North America. Columbia University Press, New York.

    Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head bacteriophage T4.Nature 227:680–685.

    PubMed  Google Scholar 

  • Lehninger, A.L. 1970. Proteins: Conformation, pp. 109–127,in Biochemistry. The Molecular Basis of Cell Structure and Function. Worth Publishers, New York.

    Google Scholar 

  • Madapallimattam, G., andBennick, A. 1990. Phosphopeptides derived from human salivary acidic proline-rich proteins.Biochem. J. 270:297–304.

    PubMed  Google Scholar 

  • Manas-Almendros, M., Ross, R., andCare, A.D. 1982. Factors affecting the secretion of phosphate in parotid saliva in the sheep and goat.Q.J. Exp. Physiol. 67:269–280.

    PubMed  Google Scholar 

  • Martin, J.S., andMartin, M.M. 1983. Tannin assays in ecological studies. Precipitation of ribulose-1, 5-bisphosphate carboxylase/oxygenase by tannic acid, quebracho and oak foliage extracts.J. Chem. Ecol. 9:285–294.

    Google Scholar 

  • McArthur, C., andSanson, G.D. 1991. Effects of tannins on digestion in the common ringtail possum (Pseudocheirus peregrinus), a specialized marsupial folivore.J. Zool. London 225:233–252.

    Google Scholar 

  • McManus, J.P, Davis, K.G., Beart, J.E., Gaffney, S.H., andLilley, T.H. 1985. Polyphenol interactions. Part I. Introduction; some observations on the reversible complexation of polyphenols with proteins and polysaccharides.J. Chem. Soc. Perkin Trans. 2:1429–1438.

    Google Scholar 

  • Mehansho, H., andCarlson, D.M. 1983. Induction of protein and glycoprotein synthesis in rat submandibular glands by isoproterenol.J. Biol. Chem. 258:6616–6620.

    PubMed  Google Scholar 

  • Mehansho, H., Hagerman, A., Clements, S., Butler, L., Rogler, J., andCarlson, D.M. 1983. Modulation of proline-rich protein biosynthesis in rat parotid glands by sorghums with tannin levels.Proc. Natl. Acad. Sci. U.S.A. 80:3948–3952.

    PubMed  Google Scholar 

  • Mehansho, H., Clements, S., Sheares, B.T., Smith, S., andCarlson, D.M. 1985. Induction of proline-rich glycoprotein synthesis in mouse salivary glands by isoproterenol and by tannins.J. Biol. Chem. 260:4418–4423.

    PubMed  Google Scholar 

  • Mehansho, H., Ann, D.K., Butler, L.G., Rogler, J., andCarlson, D.M. 1987. Induction of proline-rich proteins in hamster salivary glands by isoproterenol treatment and an unusual growth inhibition by tannins.J. Biol. Chem. 262:12344–12350.

    PubMed  Google Scholar 

  • Miles, A.E.W., andPoole, D.F.G. 1967. The history and general organization of dentitions, pp. 3–41,in A.E.W. Miles (ed.). Structural and Chemical Organization of Teeth. Academic Press, New York.

    Google Scholar 

  • Minaguchi, K., andBennick, A. 1989. Genetics of human salivary proteins.J. Dent. Res. 68:2–15.

    PubMed  Google Scholar 

  • Mole, S., andWaterman, P.G. 1987a. A critical analysis of techniques for measuring tannins in ecological studies. II. Techniques for biochemically defining tannins.Oecologia 72:148–156.

    Google Scholar 

  • Mole, S., andWaterman, P.G. 1987b. Tannins as antifeedants to mammalian herbivores—still an open question? pp. 572–587,in G.R. Waller (ed.). Tannins as Allelochemicals in Agriculture, Forestry and Ecology. American Chemical Society, Washington, DC.

    Google Scholar 

  • Mole, S., Butler, L.G., andIason, G. 1990a. Defense against dietary tannin in herbivores: a survey for proline rich salivary proteins in mammals.Biochem. Syst. Ecol. 18:287–293.

    Google Scholar 

  • Mole, S., Rogler, J.C., Morell, C.J., andButler, L.G. 1990b. Herbivore growth reduction by tannins: Use of Waldbauer ratio techniques and manipulation of salivary protein production to elucidate mechanisms of action.Biochem. Syst. Ecol. 18:183–197.

    Google Scholar 

  • Moreno, E.C., Varughese, K., andHay, D.I. 1979. Effect of human salivary proteins on the precipitation kinetics of calcium phosphate.Calcif. Tissue Int. 28:7–16.

    PubMed  Google Scholar 

  • Moreno, E.C., Kresak, M., andHay, D.I. 1982. Adsorption thermodynamics of acidic proline-rich human salivary proteins onto calcium apatites.J. Biol. Chem. 257:2981–2989.

    PubMed  Google Scholar 

  • Muenzer, J., Bildstein, C., Gleason, M., andCarlson, D.M. 1979. Properties of proline-rich proteins from parotid glands of isoproterenol-treated rats.J. Biol. Chem. 254:5629–5634.

    PubMed  Google Scholar 

  • Oh, H.I., Hoff, J.E., Arstrong, G.S., andHaff, L.A. 1980. Hydrophobic interaction in tanninprotein complexes.J. Agric. Food Chem. 28:394–398.

    Google Scholar 

  • Oho, T., Rahemtulla, F., Mansson-Rahemtulla, B., andHjerpe, A. 1992. Purification and characterization of a glycosylated proline-rich protein from human parotid saliva.Int. J. Biochem. 24:1159–1168.

    PubMed  Google Scholar 

  • Oppenheim, F.G., Offner, G.D., andTroxler, R.F. 1985. Amino acid sequence of a proline-rich phosphoglycoprotein from parotid secretion of the subhuman primateMacaca fascicularis.J. Biol. Chem. 260:10671–10679.

    PubMed  Google Scholar 

  • Oppenheim, F.G., Yang, Y.-C., Diamond, R.D., Hyslop, D., Offner, G.D., andTroxler, R.F. 1986. The primary structure and functional characterization of the neutral histidine-rich polypeptide from human parotid secretion.J. Biol. Chem. 261:1177–1182.

    PubMed  Google Scholar 

  • Poole, D.F.G. 1967. Phylogeny of tooth tissues: Enameloid and enamel in recent vertebrates, with a note on the history of cementum, pp. 111–147,in A.E.W. Miles (ed.). Structural and Chemical Organization of Teeth. Academic Press, New York.

    Google Scholar 

  • Robbins, C.T., Mole, S., Hagerman, A.E., andHanley, T.A. 1987. Role of tannins in defending plants against ruminants: Reduction in dry matter digestion?Ecology 68:1606–1615.

    Google Scholar 

  • Robbins, C.T., Hagerman, A.E., Austin, P.J., McArthur, C., andHanley, T.A. 1991. Variation in mammalian physiological responses to a condensed tannin and its ecological implications.J. Mammal. 72:480–486.

    Google Scholar 

  • Robinson, R., Kauffman, D.L., Waye, M.M.Y., Blum, M., Bennick, A., andKeller, P.J. 1989. Primary structure and possible origin of the nonglycosylated basic proline-rich protein of human submandibular/sublingual saliva.Biochem. J. 263:497–503.

    PubMed  Google Scholar 

  • Schlesinger, D.H., andHay, D.I. 1977. Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva.J. Biol. Chem. 252:1689–1695.

    PubMed  Google Scholar 

  • Schluckebier, S.K., Hay, D.I., Schlesinger, D.H., andBeal, A.M. 1989. Calcium phosphate precipitation inhibitors in red kangaroo (Macropus rufus) saliva.J. Dent. Res. 68:983.

    Google Scholar 

  • Schwartz, S.S., Hay, D.I., andSchluckebier, S.K. 1992. Inhibition of calcium phosphate precipitation by human salivary statherin: Structure-activity relationships.Calcif. Tissue Int. 50:511–517.

    PubMed  Google Scholar 

  • Scott, N.A., andBeal, A.M. 1994. Cholinergic stimulation and aldosterone administration on parotid secretion in the brushtail possum,Trichosurus vulpecula.Arch. Oral Biol. 39:351–360.

    PubMed  Google Scholar 

  • Shomers, J.P., Tabak, L.A., Levine, M.J., Mandel, I.D., andHay, D.I. 1982. Properties of cysteine-containing phosphoproteins from human submandibular-sublingual saliva.J. Dent. Res. 61:397–399.

    PubMed  Google Scholar 

  • Spencer, C.M., Cai, Y., Martin, R., Gaffney, S.H., Goulding, P.N., Magnoloto, D., Lilley, T.H., andHaslam, E. 1988. Polyphenol complexation—some thoughts and observations.Phytochemistry 27:2397–2409.

    Google Scholar 

  • Spielman, A.I., andBennick, A. 1989. Isolation and characterization of six proteins from rabbit parotid saliva belonging to a unique family of proline-rich proteins.Arch. Oral Biol. 34:117–130.

    PubMed  Google Scholar 

  • Spielman, A.I., Bernstein, A., Hay, D.I., Blum, M., andBennick, A. 1991. Purification and characterization of a rabbit salivary protein, a potent inhibitor of crystal growth of calcium phosphate salts.Arch. Oral Biol. 36:55–63.

    PubMed  Google Scholar 

  • Swain, T. 1977. Secondary compounds as protective agents.Annu. Rev. Plant Physiol. 28:479–501.

    Google Scholar 

  • Watson, G.E., Pearson, S.K., Falany, J.L., Tabak, L.A., andBowen, W.H. 1990. The effect of chronic propranolol treatment on salivary composition and caries in the rat.Arch. Oral Biol. 35:435–441.

    PubMed  Google Scholar 

  • Wong, R.S.C., andBennick, A. 1980. The primary structure of a salivary calcium-binding proline-rich phosphoprotein (protein C), a possible precursor of a related protein A.J. Biol. Chem. 255:5943–5948.

    PubMed  Google Scholar 

  • Wrangham, R.W., andWaterman, P.G. 1983. Condensed tannins in fruit eaten by chimpanzees.Biotropica 15:217–222.

    Google Scholar 

  • Ziemer, M.A., Swain, W.F., Rutter, W.J., Clements, S., Ann, D.K., andCarlson, D.M. 1984. Nucleotide sequence analysis of a proline-rich protein cDNA and peptide homologies of rat and human proline-rich proteins.J. Biol. Chem. 259:10475–10480.

    PubMed  Google Scholar 

  • Zucker, W.V. 1983. Tannins: Does structure determine function? An ecological perspective.Am. Nat. 121:335–365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McArthur, C., Sanson, G.D. & Beal, A.M. Salivary proline-rich proteins in mammals: Roles in oral homeostasis and counteracting dietary tannin. J Chem Ecol 21, 663–691 (1995). https://doi.org/10.1007/BF02033455

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02033455

Key Words

Navigation