Skip to main content
Log in

Adsorption studies of cesium on potassium copper nickel hexacyanoferrate(II) from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Adsorption of cesium from aqueous solutions on potassium copper nickel hexacyanoferrate(II) (KCNF) has been investigated in batch experiments and optimized as a function of concentration of acids, salts and adsorbate using a radiotracer technique. The results are presented in terms of distribution coefficient, Kd (ml·g−1). The uptake of cesium obeys a Freundlich adsorption isotherm over the concentration range of 3.7 to 37 mmol·l−1 with b values of 0.77, 0.68 and 0.56 at temperatures of 293, 313, 333 K, respectively. The Langmuir adsorption isotherm is followed in the concentration range of 15 to 75 mmol·l−1 in the same temperature range. The values of limiting adsorption concentration (Cm) have been found to be 2.58, 2.44 and 2.32 mmol·g−1. The heat of adsorption was calculated as 26.43 kJ·mol−1. The influence of a number of anions and cations on cesium retention has also been studied. Column experiments have been performed and breakthrough have been obtained under different operating conditions. The low cesium capacity of 1.1 mmol·g−1 has been obtained under dynamic conditions as compared to batch experiments. Desorption of cesium from the column has been achieved (45.4%) by nitric acid solution of 8M concentration at a flow rate of 0.5 ml·min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. PEKAREK, V. VESELY, Talanta, 19 (1972) 1245.

    Article  Google Scholar 

  2. A. K. DE, A. S. SEN, Sep. Sci. Technol., 13 (1978) 517.

    Google Scholar 

  3. V. KOURIM, J. RAIS, B. MILLION, J. Inorg. Nucl. Chem., 26 (1964) 1111.

    Article  Google Scholar 

  4. M. R. SHAHBANDEH, M. STREAT, J. Chem. Tech. Biotechnol., 32 (1982) 580.

    Google Scholar 

  5. M. T. GANZERLI VALENTINI, R. STELLA, M. COLA, J. Radioanal. Nucl. Chem., 102 (1986) 99.

    Article  Google Scholar 

  6. L. H. BAETSLE, D. VANDEYCK, D. HUYS, J. Inorg. Nucl. Chem., 27 (1965) 683; 28 (1966) 2383.

    Article  Google Scholar 

  7. V. KOURIM, J. RAIS, J. STEJSKAL, J. Inorg. Nucl. Chem., 26 (1964) 1761.

    Article  Google Scholar 

  8. M. SOSS, G. PFREPPER, Radiochim. Acta, 29 (1981) 33.

    Google Scholar 

  9. K. H. LIESER, J. BASTIAN, A. E. H. HECKER, W. HILD, J. Inorg. Nucl. Chem., 29 (1967) 815.

    Article  Google Scholar 

  10. SIPOS-GALIBA, K. H. LIESER, Radiochem. Radioanal. Lett., 42 (1980) 329.

    Google Scholar 

  11. J. DOLEZAL, V. KOURIM, Radiochem. Radioanal. Lett., 1 (1969) 295.

    Google Scholar 

  12. J. S. GILL, S. N. TANDON, J. Radioanal. Chem., 13 (1973) 391.

    Google Scholar 

  13. S. VLASSELAER, W. D'OLIESLAGER, M. D'HONT, J. Inorg. Nucl. Chem., 38 (1976) 327.

    Article  Google Scholar 

  14. I. P. SARASWAT, S. K. SHRIVASTAVA, A. K. SHARMA, J. Radioanal. Chem., 67 (1981) 453.

    Google Scholar 

  15. J. KRTIL, J. Inorg. Nucl. Chem., 27 (1965) 233.

    Article  Google Scholar 

  16. E. W. HOOPER, B. A. PHILLIPS, S. P. DAGNALLI, N. P. MONCHTON, AERE-R 11088 Report, Atomic Energy Researach Establishment, Harwell, 1984.

    Google Scholar 

  17. H. LOEWENSCHUSS, Rarioact. Waste Manag., 24 (1982) 327.

    Google Scholar 

  18. S. KAWAMURA, S. SHIBATA, K. KUROTAKI, H. TAKESHITA, Anal. Chim. Acta., 102 (1978) 225.

    Article  Google Scholar 

  19. T. R. FOLSOM, C. SEEKUMARAN, IAEA Technical Report Series, No. 118, Vienna, 1970, p. 120.

    Google Scholar 

  20. P. NIELSEN, B. DRESOW, R. FISCHER, H. C. HEINRICH, Nucl. Med. Biol., 18(7) (1991) 821.

    Google Scholar 

  21. H. ARINO, H. H. KRAMER, Int. J. Appl. Radiation Isotopes, 24 (1973) 197.

    Article  Google Scholar 

  22. J. LEHTO, R. HARJULA, Solv. Extr. Ion Exch., 5 (1987) 343.

    Google Scholar 

  23. M. M. ISHFAQ, H. M. A. KARIM, M. A. KHAN, J. Radioanal. Nucl. Chem., 159(2), (1992) 335.

    Article  Google Scholar 

  24. C. B. AMPHLETT, Inorganic Ion Exchangers, Elsevier, New York, 1964.

    Google Scholar 

  25. G. H. BOLT, Soil Chemistry, Part B, Physicochemical Model, Elsevier, Amsterdam, 1979, p. 118.

    Google Scholar 

  26. A. CLARK, The Theory of Adsorption and Catalyst, Academic Press, New York, 1970, p. 54.

    Google Scholar 

  27. S. M. HASANY, H. REHMAN, A. RASHID, Sep. Sci. Technol., 24(15) (1989/90) 1363.

    Google Scholar 

  28. M. J. GRAY, M. A. MALATI, J. Chem. Tech. Biotechnol., 29 (1979) 127.

    Google Scholar 

  29. M. T. VALENTINI GANZERLI, S. MELONI, V. MAXIA, J. Inorg. Nucl. Chem., 34 (1972) 1427.

    Article  Google Scholar 

  30. E. F. T. LEE, M. STREAT, J. Chem. Tech. Biotechnol., 33A (1983) 80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishfaq, M.M., Karim, H.M.A. & Khan, M.A. Adsorption studies of cesium on potassium copper nickel hexacyanoferrate(II) from aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, Articles 170, 321–331 (1993). https://doi.org/10.1007/BF02041467

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02041467

Keywords

Navigation