Skip to main content
Log in

Miscellaneous data on materials for millimetre and submillimetre optics

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

Several parameters of various materials, including solid and foam dielectrics, absorbers, and metals, are collected for use in optical design in the millimetre and submillimetre range. Although the list is not exhaustive it covers most of the important materials and parameters, and extensive references are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Simonis, “Index to the literature dealing with the near-millimeter wave properties of materials,”Int. J. Infrared Millimeter Waves, vol. 3, no. 4, pp. 439–469, 1982.

    Google Scholar 

  2. J. R. Birch, “A bibliography on dispersive Fourier Transform spectrometry, 1963–1968”,NPL Report DES 93, Mar. 1989.

  3. J. R. Birch and R. N. Clarke, “Dielectric and optical measurements from 30 to 1000 GHz,”The Radio and Electronic Engineer, vol. 52, no. 11/12, pp. 565–584, Nov./Dec. 1982.

    Google Scholar 

  4. M. N. Afsar and K. J. Button, “Millimeter-wave dielectric measurement of materials,”Proc. IEEE, vol. 73, no. 1, pp. 131–153, Jan. 1985.

    Google Scholar 

  5. J. Chamberlain, “Submillimeter-wave techniques,”High Frequency Dielectric Measurements, p. 105 IPC Science and Technology Press Ltd., 1972

  6. J. R. Birch, G. J. Simonis, M. N. Afsar, R. N. Clarke, J. M. Dutta, H. M. Frost, X. Gerbaux, A. Hadini, W. F. Hall, R. Heidinger, W. W. Ho, C. R. Jones, F. Königer, R. L. Moore, H. Matuso, T. Nakano, W. Richter, K. Saki, M. R. Stead, U. Stumper, R. S. Vigil and T. B. Wells, “An intercomparison of measurement techniques for the determination of the dielectric properties of solids at near millimeter wavelengths,”IEEE Trans. Microwave Theory Tech., vol. 42, no. 6, pp. 956–965, Jun. 1994.

    Google Scholar 

  7. M. Born and E. Wolf:Principles of Optics, Oxford: Pergamon Press, 1980.

    Google Scholar 

  8. J. W. Lamb and J. M. Payne: Private communication.

  9. M. Halpern, H. P. Gush, E. Wishnow, and V. De Cosmo, “Far infrared transmission of dielectrics at cryogenic and room temperatures: glass, Fluorogold, Eccosorb, Stycast and various plastics,”Appl. Opt., vol. 25, no. 4, pp. 565–570, Feb. 1986.

    Google Scholar 

  10. R. W. Haas and P. W. Zimmerman, “22-GHz measurements of dielectric constants and loss tangents of castable dielectrics at room and cryogenic temperatures,”IEEE Trans. Microwave Theory Tech., vol. MTT-24, no. 11, pp. 882–883, Nov. 1976.

    Google Scholar 

  11. W. Meyer, “Variation of dielectric microwave losses in polyethylene as a result of different sample treatments,” inNonmetallic Materials and Composites, A. F. Clark, R. P. Reed, and G. Hartwig (Eds), Plenum: New York, 1979.

    Google Scholar 

  12. J. D. Cook, J. W. Zwart, K. J. Long, V. O. Heinen, and N. Stankiewicz, “An experimental apparatus for measuring surface resistance in the submillimeter-wavelength region,”Rev. Sci. Instrum., vol. 62. no. 10, pp. 2480–2485, Oct. 1991.

    Google Scholar 

  13. F. J. Tischer, “Excess conduction losses at millimeter wavelengths”,IEEE Trans. Microwave Theory Tech., vol. MTT-24, no. 11, pp. 853–858, Nov. 1976.

    Google Scholar 

  14. J. Sanford, “A Luneberg lens update,”IEEE Antennas and Propagat., vol. 37, no. 1, pp. 76–79, Feb. 1995.

    Google Scholar 

  15. M. N. Afsar, “Precision millimeter-wave measurements of complex refractive index, complex dielectric permittivity, and loss tangent of common polymers,”IEEE Trans. Instrum. Meas., vol. IM-36, no. 2, pp. 530–536, Jun. 1987.

    Google Scholar 

  16. V. V. Parshin, “Dielectric materials for gyrotron output windows,”Int. J. Infrared Millimeter Waves, vol. 15, no. 2, pp. 339–348, 1994.

    Google Scholar 

  17. M. N. Afsar, “Dielectric measurements of millimeter-wave materials,”IEEE Trans. Microwave Theory Tech., vol. MTT-32, no. 12, pp. 1598–1609, Dec. 1984.

    Google Scholar 

  18. G. J. Simonis and R. D. Felock, “Index of refraction determination in the near-millimeter wavelength range using a mesh Fabry-Perot resonant cavity,”Appl. Opt., vol. 22, no. 1, pp194–197, Jan. 1983.

    Google Scholar 

  19. J. M. Dutta, C. R. Jones, and H Davé, “Complex dielectric constants for selected near-millimeter-wave materials at 245 GHz,”IEEE Trans. Microwave Theory Tech., vol. MTT-34, no. 9, pp. 932–936, Sept. 1986.

    Google Scholar 

  20. U. Stumper, “Six-port and four-port reflectometers for complex permittivity measurements at submillimeter wavelengths,”IEEE Trans. Microwave Theory Tech., vol. 37, no. 1, pp. 222–230, Jan. 1989.

    Google Scholar 

  21. F. I. Shimabukuro, S. Lazar, M. R. Chernick, and H. B. Dyson, “A quasioptical method for measuring the complex permittivity of materials,”IEEE Trans. Microwave Theory Tech., vol. MTT-32, no. 7, pp. 659–665, Jul. 1984.

    Google Scholar 

  22. P. Goy and M. Gross, “Free space vector transmission-reflection from 18 to 760 GHz,”Proc. 24th European Microwave Conf. Cannes, France, pp. 1973–1978, Sep. 1994.

  23. J. R. Birch, “Optical constants of some commercial microwave materials between 90 and 1200 GHz,”IEE Proc., vol. 130, Pt. H, no. 5, pp. 327–330, Aug. 1983.

    Google Scholar 

  24. A. R. Von Hipple:Dielectric Materials And Applications, New York: Wiley, 1954.

    Google Scholar 

  25. F. Sobel, F. L. Wentworth and J. C. Wiltse, “Quasi-optical surface waveguide and other components for 100 to 300 Gc region,”IRE Trans. Microwave Theory Tech., vol. MTT-9, no. 6, pp. 512–518, Nov. 1961.

    Google Scholar 

  26. J. R. Birch and F. P. Kong, “Birefringence and dichroism in Fluorogold at near-millimeter wavelengths,”Infrared Phys., vol. 26, no. 2, pp. 131–133, 1986.

    Google Scholar 

  27. G. Dall'Oglio, P. De Bernardis, S. Masi, F. Melchiorri, A. Blanco, F. Alessandro, and S. Fonti, “Polarization properties of Fluorogold in the far-infrared,”Infrared Phys., vol. 22, pp. 185–186, 1982.

    Google Scholar 

  28. P. B. Whibberly and J. R. Birch, “The temperature variation of the near-mm wavelength optical constants of Fluorosint,”Infrared Phys., vol. 29, no. 6, pp. 995–996, 1989.

    Google Scholar 

  29. K. H. Breeden,et. al., “Complex permittivity measurements at millimeter wavelengths,”Dielectric Materials and Applications, pp. 50–53, IEE Conf. Pub. no. 67, 1970.

  30. K. H. Breeden and A. P. Sheppard, “A note on the millimeter wave dielectric constant and loss tangent value of some common materials,”Radio Science, no. 2, p 205, Feb. 1968.

  31. R. G. Jones, “Millimeter wave dielectric measurement using open resonators,”High Frequency Dielectric Measurements, pp. 78–83, IPC Science and Technology Press Ltd., 1972.

  32. A. F. Harvey,Microwave Engineering, London: Academic Press, 1963

    Google Scholar 

  33. Q. Bingsheng, L. Chengjia, H. Jiangjun, and Q. Ruman, “Automatic measurement for dielectric properties of solid material at 890 GHz,”Int. J. Infrared Millimeter Waves, vol. 13, no. 6, pp. 923–931, 1992.

    Google Scholar 

  34. E. V. Loewenstein, D. R. Smith, and R. L. Morgan, “Optical constants of far infrared materials. 2: Crystalline solids”,Appl. Opt., vol. 12, no. 2, pp. 398–406, Feb. 1973.

    Google Scholar 

  35. D. T. Llewellyn-Jones, R. J. Knight, P. H. Moffat, and H. A. Gebbie, “New method of measuring low values of dielectric loss in the near millimetre wavelength region using untuned cavities,”IEE Proc., vol. 127, Pt. A. no. 8, pp. 535540, Nov. 1980.

    Google Scholar 

  36. J. R. Birch, J. D. Dromey and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,”Infrared Phys., vol. 21, pp. 225–228, 1981. (For numerical data, see also: J. R. Birch, J. D. Dromey and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,”NPL Report DES 69, National Physical Laboratory (UK), Feb. 1981)

    Google Scholar 

  37. J. W. Flemming and G. W. Chantry, “Accurate radiometric measurements on low-loss polymers at submillimetric wavelengths,”IEEE Trans. Instrum. Meas., vol. IM-23, no. 4, pp. 473–478, Dec. 1974.

    Google Scholar 

  38. J. R. Birch, “The far infrared optical constants of polyethylene,”Infrared Phys., vol. 30, no. 2, pp. 195–197, 1990.

    Google Scholar 

  39. K. Seeger, “Microwave measurement of the dielectric constant of high-density polyethylene,”IEEE Trans. Microwave Theory Tech., vol. 39, no. 2, pp. 352–354, Feb., 1991.

    Google Scholar 

  40. J. R. Birch and F. P. Kong, “An interferometer for the determination of the temperature variation of the complex refraction spectra of reasonably transparent solids at near-millimetre wavelengths,”Infrared Phys., no. 2/3, pp. 309–314, 1984.

  41. J. R. Birch, “Systematic errors in dispersive Fourier transform spectroscopy in a non-vacuum environment,”Infrared Phys., vol. 34, no. 1, pp. 89–93, 1993.

    Google Scholar 

  42. W. L. Brooks,et al., “Absorption of millimeter waves in dielectric solids,”J. Opt. Soc. Am., vol. 43, pp. 1191–1194, Dec. 1953.

    Google Scholar 

  43. P. G. J. Irwin, P. A. R. Ade, S. B. Calcutt, S. B. Calcutt, F. W. Taylor, J. S. Seeley, R. Hunneman and L. Walton, “Investigation of dielectric spaced resonant mesh filter designs for PMIRR,”Infrared Phys., vol. 34, no. 6, pp. 549–563, 1993.

    Google Scholar 

  44. R. G. Fellers, “Measurements in the millimeter to micron range,”Proc. IEEE, vol. 55, no. 6, pp. 1003–1014, Jun. 1967.

    Google Scholar 

  45. M. N. Afsar, J. Chamberlain, and G. W. Chantry, “High-precision dielectric measurements on liquids and solids at millimeter and submillimeter wavelengths,”IEEE Trans. Instrum. Meas., vol. IM-25, no. 4, pp. 290–294, Dec. 1976.

    Google Scholar 

  46. G. E. Conklin, “Measurement of the dielectric loss tangent of isotropic films at millimeter wavelengths,”Rev. Sci. Instrum., vol. 36, no. 9, pp. 1347–1349, Sep. 1965.

    Google Scholar 

  47. P. A. R. Ade, J. Acres, and W. R. Van der Reijden, “Reflection and absorption coefficients of Melinex at 338 μ,”Infrared Phys., vol. 11, pp. 233–235, 1971.

    Google Scholar 

  48. G. W. Chantry, “Optical materials for the submillimeter wave band,”High Frequency Dielectric Measurements, pp. 117–121, IPC Science and Technology Press Ltd., 1972.

  49. J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE, and polysytrene,”Infrared Phys., vol. 6, no.1, pp. 33–38, 1992. (For numerical data, see also “The far-infrared optical constants of some common poyymers,”NPL Report DES 111, National Physical Laboratory (UK), Jun. 1991)

    Google Scholar 

  50. W. Culshaw and M. V. Anderson, “Measurement of permittivity and dielectric loss with a mm-wave Fabry-Perot interferometer,”IEE Proc., vol. 109, Pt. B, Supp. 23, pp. 820–826, 1961.

    Google Scholar 

  51. R. G. Jones, “Dielectric measurements at mm wavelengths using open resonators,”Dielectric Materials and Applications, pp. 141-144-53, IEE Conf. Pub. no. 129, 1975.

  52. R. J. Cook, R. G. Jones, and C. B. Rosenberg, “Comparison of cavity and open resonator measurements of permittivity and loss angle,”IEEE Trans. Instrum. Meas., vol. IM-23, no. 4, pp. 438–442, Dec. 1974.

    Google Scholar 

  53. V. B. Braginsky, V. S. Ilchenko, “Experimental observations of fundamental microwave absorption in high-quality dielectric crystals,”Phys. Lett., vol. 120, no. 6, pp. 300–305, Mar. 1987.

    Google Scholar 

  54. M. N. Afsar and H. Chi, “Window materials for high power gyrotron,”Int. J. Infrared Millimeter Waves, vol. 15, no. 7, pp. 1161–1179, 1994.

    Google Scholar 

  55. V. V. Parshin, R. Heidinger, B. A. Andreev, A. V. Gusev, and V. B. Shmagin, “Silicon as an advanced window material for high power gyrotrons.”Int. J. Infrared and Millimeter Waves, vol. 16, no. 5, pp. 864–877, 1995.

    Google Scholar 

  56. M. N. Afsar and H. Chi: “Millimeter wave complex refractive index, complex dielectric permittivity and loss tangent of extra high putity and compensated silicon,”Int. J. IR and Millimeterwaves, vol. 15, no. 7, pp. 1181–1188, 1994.

    Google Scholar 

  57. J. R. Birch and E. A. Nichol, “The FIR optical constants of the polymer TPX,”Infrared Phys., vol. 24, no. 6, pp. 573–575, 1984.

    Google Scholar 

  58. C. Meny, J. Léotin, and J. R. Birch, “Temperature variation of the near millimetre wavelength optical constants of TPX,”Infrared Phys., vol. 31, no. 2, pp. 211–213, 1991.

    Google Scholar 

  59. J. R. Birch, E. A. Nichol, and R. L. T. Street, “New near-millimeter wavelength radome material”,Appl. Opt., vol. 22, pp. 2947–2949, Oct. 1983.

    Google Scholar 

  60. A. R. Kerr, N. J. Bailey, D E. Boyd and N. Horner, “A study of materials for a broadband millimeter-wave quasi-optical vacuum window”,Electronics Division Internal Report No. 292, NRAO, Aug. 1992.

  61. A. Karpov, “Properties of polystyrene foams in 300–600 GHz range,”IRAM Technical Report, Aug. 1993.

  62. H. Hemmati, J. C. Mather and W. L. Eichorn. “Submillimeter and millimeter wave characterization of absorbing materials,”Appl. Opt., vol. 24, no. 24, pp. 4489–4492, Dec. 1985.

    Google Scholar 

  63. J. B. Peterson and P. L. Richards, “A cryogenic blackbody for millimeter wavelengths”,Int. J. Infrared Millimeterwaves., vol. 5, no. 12, pp. 1507–1515, 1984

    Google Scholar 

  64. L. Pettersson, “Tests of some mm-wave materials,”Electronics Division Internal Report No. 122, Aug. 1972.

  65. F. Mattiocco, “Absorber measurements between 80 and 115 GHz”,IRAM Internal Report, Apr. 1994.

  66. F. Mattiocco,IRAM Technical Note, Jun. 1994.

  67. G. Schwartz, “Thermal expansion of polymers from 4.2 K to room temperature,”Cryogenics, vol. 28, pp. 248–254, Apr. 1988.

    Google Scholar 

  68. A. C. Rose-Innes,Low Temperature Techniques, The English University Press, 1973.

  69. A. P. D. Stewart and J. W. Lamb, Private communication.

  70. G. E. Childs, L. J. Ericks, and R. L. Powell:Thermal Conductivity of Solids at Room Temperature and Below, NBS Monograph 131, 1973.

  71. J. B Beyer and E. H. Scheibe, “Loss measurements of the beam waveguide,”IEEE Trans. Microwave Theory Tech., vol. MTT-11, no. 1, pp. 18–22, Jan. 1963.

    Google Scholar 

  72. N. Marcuvitz:Waveguide Handbook, London: Peter Peregrinus, 1986.

    Google Scholar 

  73. J. J. Bock, M. K. Parikh, M. L. Fischer, and A. E. Lange, “Emissivity measurements of reflective surfaces at near-millimeter wavelengths,”Appl. Optics, vol. 34, no. 22, pp 4812–16, Aug. 1995.

    Google Scholar 

  74. J. W. Zwart, V. O. Heinen, K. Long, and N. Stankiewicz: “Surface resistance measurements at 377 GHz,”Int. J. Infrared and Millimeter Waves, vol. 17, no. 2, pp 349–357, 1996.

    Google Scholar 

  75. H. Matuso, J. Inatani, N. Kuno, K. Miyazawa, K. Okumura, T. Kasuga, and H. Murakami, “Submillimeter-wave telescope onboard a sounding rocket,”SPIE Proc., San Diego, 1994.

  76. R. J. Batt, G. D. Jones, and D. J. Harris, “The measurement of evaporated gold at 890 GHz”,IEEE Trans. Microwave Theory Tech., vol. MTT-25, no. 6, pp. 488–491, Jun. 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamb, J.W. Miscellaneous data on materials for millimetre and submillimetre optics. Int J Infrared Milli Waves 17, 1997–2034 (1996). https://doi.org/10.1007/BF02069487

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02069487

Key words

Navigation