Skip to main content
Log in

Hydrolytic and enzymatic degradation of poly(γ-glutamic acid) hydrogels and their application in slow-release systems for proteins

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

The hydrolytic and enzymatic degradation of newly developed hydrogels, produced by cross-linking purified poly(γ-glutamic acid) (γPGA) with dihaloalkane compounds, was studied and is reported in this paper. Analysis of hydrolysis of the hydrogel as a function of pH indicated that the hydrolysis occurred slowly at neutral pH, but fast in both acidic and alkaline solutions, while the polymer could be hydrolyzed rapidly only in acidic solutions. The ester bonds were more sensitive to hydrolysis than peptide bonds. The biodegradability of the hydrogel and polymer was further confirmed when enzymatic degradation was studied by three enzymes (cathepsin B, pronase E, and trypsin), which were able to cleave both ester and peptide bonds gradually. A slow-release system for porcine somatotropin (pST) formed by using the hydrogel as matrix to entrap the hormone was evaluatedin vitro andin vivo. Results demonstrated that the hydrogel was able to release the hormone for a period of 20–30 days and indicated its potential application in slow-release systems for bioactive materials, especially macromolecules, such as peptides and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Domb, S. Amselem, and M. Maniar (1994) in S. Dumitriu (Ed.),Polymeric Biomaterials, Marcel Dekker, New York, pp. 399–433.

    Google Scholar 

  2. R. Langer (1990)Science 249 1527–1533.

    CAS  Google Scholar 

  3. J. Kohn and P. Sinko (1992) in M. A. El-Nokalyet al. (eds.),Polymeric Delivery Systems: Properties and Application, ACS Symposium Series 520, pp. 18–41.

  4. P. L. Lee and W. R. Good (1987)Controlled-Release Technology, American Chemical Society Symposium Series 348, Washington, DC.

  5. R. Langer and M. Moses (1991)J. Cell. Biochem 43 340–345.

    Google Scholar 

  6. E. Ron, T. Turek, E. Mathiowitz, M. Chasin, M. Hageman, and R. Langer (1993)Proc. Natl. Acad. Sci. USA 90 4176–4180.

    CAS  Google Scholar 

  7. C. G. Pitt (1993)Proc. Int. Symp. Control. Rel. Bioact. Mater., Controlled Release Society, Inc., Vol. 20, pp. 146–147.

    Google Scholar 

  8. N. A. Peppas, and L. K. Foster (1994)J. Appl. Polym. Sci. 52 763–768.

    CAS  Google Scholar 

  9. K. Park (1993)Polym. Prepr. 34 844–845.

    CAS  Google Scholar 

  10. C. B. Thorne, C. G. Gomez, H. E. Noyes, and R. D. Housewright (1954)J. Bacteriol 68 307–315.

    CAS  Google Scholar 

  11. J. W. Goodman and D. E. Nitecki (1967)Immunology 13 577–583.

    CAS  Google Scholar 

  12. T. G. Blanchard (1991)Investigating the Use of Polyglutamic Acid for Enteric Delivery of Idiotypic Antibodies, Ph.D. dissertation, University of Massachusetts, Amherst.

    Google Scholar 

  13. H. Kubota, Y. Nambu, and T. Endo (1993)J. Polym. Sci. A Polym. Chem. 31 2877–2878.

    CAS  Google Scholar 

  14. M. Borbely, Y. Nagasaki, J. Borbely, K. Fan, A. Bhogle, and M. Sevoian (1994)Polym. Bull. 32 127–132.

    CAS  Google Scholar 

  15. T. D. Shah, S. P. McCarthy, and R. A. Gross (1992)Polym. Prepr. 33 488–490.

    CAS  Google Scholar 

  16. C. M. Evock, T. D. Etherton, C. S. Chung, and R. E. Ivy (1988)J. Anim. Sci. 66 1928–1941.

    CAS  Google Scholar 

  17. M. W. A. Verstegen, W. Van del Hel, H. A. Brandsma, A. M. Henken, E. Kanis, and P. Van der Wal (1991)J. Anim. Sci. 69 2961–2970.

    CAS  Google Scholar 

  18. S. D. M. Jones, A. L. Schaefer, A. K. W. Tong, W. Robertson, and L. L. Holt (1994)Can. J. Anim. Sci. 74 15–22.

    Article  CAS  Google Scholar 

  19. C. G. Leonard, R. D. Housewright, and C. B. Thorne (1958)J. Bacteriol. 76 499–503.

    CAS  Google Scholar 

  20. D. Gonzales, K. Fan, and M. Sevoian (1996)J. Polym. Sci. A Polym. Chem. 34.

  21. K. Fan, D. Gonzales, and M. Sevoian (1996) in preparation.

  22. M. D. Groesbeck and A. F. Parlow (1987)Endocrinology 120 2582–2590.

    Article  CAS  Google Scholar 

  23. B. L. Buckwalter, S. M. Cady, H. M. Shieh, A. K. Chaudhuri, and D. F. Johnson (1992)J. Agr. Food Chem. 40 356–362.

    CAS  Google Scholar 

  24. U. Iizuka, M. Oya, M. Iwatsuki, and T. Hayashi (1993)Polym. J. 25 285–290.

    CAS  Google Scholar 

  25. P. Rejmanova, J. Kopecek, J. Pohl, M. Baudys, and V. Kostka (1983)Makromol. Chem. 184 2009–2020.

    CAS  Google Scholar 

  26. J. Pytela, V. Saudek, J. Drobnik, and F. Rypacek (1989)J. Control. Release 10 17–25.

    CAS  Google Scholar 

  27. C. B. Thorne and C. G. Leonard (1958)J. Biol. Chem. 233 1109–1112.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, K., Gonzales, D. & Sevoian, M. Hydrolytic and enzymatic degradation of poly(γ-glutamic acid) hydrogels and their application in slow-release systems for proteins. J Environ Polym Degr 4, 253–260 (1996). https://doi.org/10.1007/BF02070694

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02070694

Key words

Navigation