Skip to main content
Log in

Degradation studies of novel degradable starch-polyethylene plastics containing oxidized polyethylene and prooxidant

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

Linear low-density polyethylene films were prepared that contained native corn starch (7, 14, or 28%), low or high molecular weight oxidized polyethylene (15%), and a prooxidant mixture (18% POLYCLEAN II) that contains manganese and vegetable oil. For each mixture all components were first mixed at high temperatures in a twin-screw extruder and pelletized. The pellets were cast into films using a single-screw extruder. Oxidized-polyethylene addition did not impair the transparency and thickness of the films and did not reduce the percentage elongation, whereas significant reductions in film mechanical properties were observed. Thermal and photodegradation properties of each film were evaluated by 70°C forced-air oven treatment (20 days), by high-temperature, high-humidity treatment in a steam chamber (20 days), and by exposure to ultraviolet light (365 nm; 4 weeks). Changes in the mechanical properties of the films were determined by an Instron Universal Test Machine; in the carbonyl index, Fourier transform infrared spectroscopy; and in molecular weight, by high-temperature gel-permeation chromatography (HT-GPC). The addition of oxidized polyethylene, especially high molecular weight oxidized polyethylene, and up to 14% starch to the films significantly increased the rate of thermal and photodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson (1987) inProceedings of the SPI Symposium on Degradable Plastics, Society of the Plastics Industry, Washington, DC.

    Google Scholar 

  2. U. S. Environment protection Agency and T. Randall curlee sujit das (1991)Plastic wastes: Management, Control, Recycling, and Disposal, Noyes Data Corp., NJ.

    Google Scholar 

  3. R. Leaversuch, (1987)Modern Plastics.64 52–55.

    Google Scholar 

  4. J. Guillet (1973) United States Patent 3,753,952.

  5. J. Guillett (1975) United States Patent 3,860,538.

  6. C. David, M. Trojan, and A. Daro (1992)Polym. Degrad. Stabil. 37 233–245.

    Google Scholar 

  7. G. Scott,Polym. Degrad. Stabil. (1990)29 135–154.

    Google Scholar 

  8. P. Gage, (1990)Tappi J. 73 161–169.

    Google Scholar 

  9. D. E. Hudgin, and T. Zawadzki (1985) United States Patent 4,495,311.

  10. K. E. Johnson, A. L. Pometto III, and Z. L. Nikolov (1993)Appl. Environ. Microbiol. 59 1155–1161.

    Google Scholar 

  11. B. Lee, A. L. Pometto III, A. Fratzke, and T. B. Bailey (1991)Appl. Environ. Microbiol. 57 678–685.

    Google Scholar 

  12. J. Jane, A. W. Schwabacher, S. N. Ramrattan, and J. A. Moore (1992) United States Patent 5,115,000.

  13. A. L. Pometto III, B. Lee, and K. E. Johnson (1992)Appl. Environ. Microbiol. 58 731–733.

    PubMed  Google Scholar 

  14. W. Sung and Z. L. Nikolov (1992)Ind. Eng. Chem. Res. 31 2332–2339.

    Google Scholar 

  15. G. J. L. Griffin (1977) United States Patent 4,016,117.

  16. G. J. L. Griffin (1977) United States Patent 4,021,388.

  17. G. J. L. Griffin (1974)Adv. Chem. Ser. 134, American Chemical Society, Washington, DC.

  18. F. H. Otey, R. P. Westhoff, and C. R. Russell (1977)Ind. Eng. Chem. Prod. Res. Dev. 16 305–308.

    Google Scholar 

  19. F. H. Otey, A. M. Mark, C. L. Mehltretter, and C. R. Russell (1974)Ind. Eng. Chem. Prod. Res. Dev. 13 90–92.

    Google Scholar 

  20. R. P. Westhoff, F. H. Otey, C. L. Mehltretter, and C. R. Russell (1974)Ind. Eng. Chem. Prod. Res. Dev. 13 123–125.

    Google Scholar 

  21. ASTM (1975) ASTM E 203-75, Standard test method for water using Karl Fisher reagent,1975 Annual Book of ASTM Standards.

  22. R. L. Evangelista, Z. L. Nikolov, W. Sung, J. Jane, and R. Gelina (1991)Ind. Eng. Chem. Res. 30, 1841–1846.

    Google Scholar 

  23. K. E. Johnson, A. L. Pometto III, L. Somasundaram, and J. Coats (1993)J. Environ. Polym. Degrad. 1 111–116.

    Google Scholar 

  24. A. R. Fratzke, W. Sung, R. L. Evangelista, and Z. L. Nikolov (1991)Anal. Lett. 24 847–856.

    Google Scholar 

  25. A. C. Albertsson, S. O. Andersson, and S. Karlsson (1987)Polym. Degrad. Stabil. 18 73–87.

    Google Scholar 

  26. ASTM (1991) ASTM D 882-90. Standard test methods for tensile properties of thin plastic sheeting,1991 Annual Book of ASTM Standards.

  27. SAS Institute Inc. (1985)SAS Introductory Guide for Personal Computers, Release 6.03 Edition, SAS Institute Inc., Cary, NC.

    Google Scholar 

  28. M. Chanda and S. K. Roy (1987) inPlastics Technology Handbook, Marcel Dekker, New York, pp. 3–12.

    Google Scholar 

  29. J. Cornell, A. M. Kaplan, and M. R. Rogers (1984)J. Appl. Polym. Sci. 29 2581–2597.

    Google Scholar 

  30. R. L. Spore and R. M. Bethea (1972)Ind. Eng. Chem. Prod. Res. Dev. 11 36–45.

    Google Scholar 

  31. A. Holmstrom and E. M. Sorvik (1978)J. Polym. Sci. 16 2555–2585.

    Google Scholar 

  32. A. C. Albertsson and S. Karlsson (1988)J. Appl. Polym. Sci. 35 1289–1302.

    Google Scholar 

  33. J. V. Benham and T. J. Pullukat (1976)J. Appl. Polym. Sci. 20 3295–3303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Journal Paper No. J-15363 of the Iowa Agriculture and Home Economics Experiment Station, Ames. Project No. 0178 and 2889.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Pometto, A.L., Johnson, K.E. et al. Degradation studies of novel degradable starch-polyethylene plastics containing oxidized polyethylene and prooxidant. J Environ Polym Degr 2, 27–38 (1994). https://doi.org/10.1007/BF02073484

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02073484

Key words

Navigation