Skip to main content
Log in

Ideal-gas thermodynamic properties for natural-gas applications

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Calculating caloric properties from a thermal equation of state requires information such as isobaric heat capacities in the ideal-gas state as a function of temperature. In this work, values for the parameters of thec 0p correlation proposed by Aly and Lee were newly determined for 21 pure gases which are compounds of natural gas mixtures. The values of the parameters were adjusted to selectedc 0p data calculated from spectroscopic data for temperatures ranging from 10 to 1000 K. The data sources used are discussed and compared with literature data deduced from theoretic models and caloric measurements. The parameters presented will be applied in a current GERG project for evaluating equations of state (e.g., the AGA 8 equation) for their suitability for calculating caloric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Laughton and A. E. Humphreys,Improvements in the Formulation of Ideal Gas Thermodynamic Properties for Natural Gas Applications, Proc. 4th IGRC, Tokyo, 1989 (Government Institutes Inc., Rockville, MD, 1990), pp. 1769–1778.

    Google Scholar 

  2. J. L. Savidge and J. J. S. Shen,Sound Speed of Natural Gas, Proc. 4th IGRC, Tokyo, 1989 (Government Institutes Inc., Rockville, MD, 1990), pp. 511–519.

    Google Scholar 

  3. F. A. Aly and L. L. Lee,Fluid Phase Equil. 6:169 (1981).

    Google Scholar 

  4. K. E. Starling and J. L. Savidge,Compressibility Factors of Natural Gas and Other Related Hydrocarbon Gases [American Gas Association (AGA) Transmission Measurement Committee Report No. 8, 2nd ed., 1992).

  5. R. S. McDowell and F. H. Kruse,J. Chem. Eng. Data 8:547 (1963).

    Google Scholar 

  6. J. Hilsenrath, C. W. Beckett, W. C. Benedict, L. Fano, H. J. Hodge, I. F. Masi, R. L. Nutall, Y. S. Touloukian, and H. W. Woolley, Tables of thermal properties of gases.NBS Circ. 564:473 (1955).

    Google Scholar 

  7. J. Chao, personal communication to R. Span (Ruhr-UniversitÄt, Bochum).

  8. J. Chao, R. C. Wilhoit, and B. J. Zwolinski,J. Phys. Chem. Ref. Data 2:427 (1973).

    Google Scholar 

  9. S. S. Chen, R. C. Wilhoit, and B. J. Zwolinski,J. Phys. Chem. Ref. Data 4:859 (1975).

    Google Scholar 

  10. TRC,Thermodynamic Tables (Thermodynamic Research Center, Texas A&M University, College Station, 1972–1993).

    Google Scholar 

  11. K. SchÄfer and W. Auer,Values for the Thermodynamic Functions at Standard Pressures as a Function of Temperature for Selected Substances (Werte der thermodynamischen Funktionen bei Standarddrücken in AbhÄngigkeit von der Temperatur für ausgewÄhlte Stoffe) (Springer, Berlin, 1961).

    Google Scholar 

  12. H. D. Baehr, H. Hartmann, H. C. Pohl, and H. SchomÄcker,Thermodynamic Functions of Ideal Gases for Temperatures up to 6000 K (Thermodynamische Funktionen idealer Gase für Temperaturen bis 6000 K) (Springer, Berlin, 1968).

    Google Scholar 

  13. H. W. Woolley, inWater and Steam, Their Properties and Current Industrial Applications (Pergamon, Elmsford, NY, 1980), pp. 166–175.

    Google Scholar 

  14. H. W. Woolley,J. Res. NBS 92:35 (1987).

    Google Scholar 

  15. JANAF,Thermodynamic Tables (3rd. ed.), M. W. Chase, J. L. Curnutt, J. R. Downey, R. A. McDonald, A. N. Syverud, and E. A. Valenzuela,J. Phys. Chem. Ref. Data 14:Suppl. 1 (1985).

  16. W. Lemming,Experimental Determination of Acoustic and Thermal Virial Coefficients for Working Fluids in Chemical Engineering (Experimentelle Bestimmung akustischer und thermischer Virialkoffizienten von Arbeitsstoffen der Energietechnik) (VDI Fortschritt-Berichte, Reihe 19, Nr. 32, VDI-Verlag, Düsseldorf, 1989).

    Google Scholar 

  17. J. P. M. Trusler and M. Zarari,J. Chem. Thermodyn. 24:973 (1992).

    Google Scholar 

  18. M. B. Ewing and A. R. H. Goodwin,J. Chem. Thermodyn. 24:1257 (1992).

    Google Scholar 

  19. W. Beckermann,Speed of Sound Measurements on Working Fluids in Chemical Engineering (Messung der Schallgeschwindigkeiten an Arbeitsstoffen der Energietechnik) (VDI-Fortschritt-Berichte, Reihe 19, Nr. 67, VDI-Verlag, Düsseldorf, 1993).

    Google Scholar 

  20. J. A. Goff and S. Gratch,Trans. ASME 72:741 (1950)

    Google Scholar 

  21. H. W. Woolley, personal communication to V. V. Sychev, A. A. Vasserman, A. D. Kozlov, G. A. Spiridonov, and V. A. Tsymarny,Thermodynamic Properties of Nitrogen (Springer, Berlin, 1970).

    Google Scholar 

  22. L. V. Gurvich,Thermodynamic Properties of Characteristic Substances, Vol. II, Part 2 (Nauka, Moscow, 1979).

    Google Scholar 

  23. J. P. M. Trusler,Physica A 184:415 (1992).

    Google Scholar 

  24. H. W. Woolley,J. Res. NBS 52:289 (1954).

    Google Scholar 

  25. J. F. Masi and B. Petkof,J. Res. NBS 48:179 (1952).

    Google Scholar 

  26. G. Ernst, G. Maurer, and E. Wiederuh,J. Chem. Thermodyn. 21:53 (1989).

    Google Scholar 

  27. W. Lemming, personal communication to R. Span (Ruhr-UniversitÄt, Bochum, 1989).

  28. K. M. Pamidimukkala, D. Rogers, and G. B. Skinner,J. Phys. Chem. Ref. Data 11:83 (1982).

    Google Scholar 

  29. G. B. Kistiakowsky and W. W. Rice,J. Chem. Phys. 8:610 (1940).

    Google Scholar 

  30. B. P. Daily and W. A. Felsing,J. Am. Chem. Soc. 65:42 (1943).

    Google Scholar 

  31. G. Ernst and U. E. Hochberg,J. Chem. Thermodyn. 21:407 (1989).

    Google Scholar 

  32. G. B. Kistiakowsky, J. R. Lacher, and W. W. Ransom,J. Chem. Phys. 8:970 (1940).

    Google Scholar 

  33. G. B. Kistiakowsky and W. W. Rice,J. Chem. Phys. 8:610 (1940).

    Google Scholar 

  34. G. Ernst and J. Büsser,J. Chem. Thermodyn. 2:787 (1970).

    Google Scholar 

  35. M. B. Ewing, A. R. H. Goodwin, M. L. McGlashan, and J. P. M. Trusler,J. Chem. Thermodyn. 21:867 (1989).

    Google Scholar 

  36. S. O. Colgate, C. F. Sona, K. Reed, and A. Sivaraman,J. Chem. Eng. Data 4:859 (1990).

    Google Scholar 

  37. P. F. Wacker, R. K. Cheney, and R. B. Scott,J. Res. NBS 38:651 (1947).

    Google Scholar 

  38. D. W. Scott,J. Chem. Phys. 60:3144 (1974).

    Google Scholar 

  39. M. B. Ewing, A. R. H. Goodwin, and J. P. M. Trusler,J. Chem. Thermodyn. 21:867 (1989).

    Google Scholar 

  40. H. Zeise,Thermodynamic, Vol. II, Part 1, Tables (Thermodynamik, Bd. III/1, Tabellen) (Hirzel, Leipzig, 1954).

  41. P. Schley,Development of Correlations for the Isobaric Heat Capacity in the State of the Ideal-Gas (Entwicklung von Korrelationsgleichungen für die isobare WÄrmekapazitÄt im Zustand des idealen Gases) (Diplomarbeit, Ruhr-UniversitÄt, Bochum, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaeschke, M., Schley, P. Ideal-gas thermodynamic properties for natural-gas applications. Int J Thermophys 16, 1381–1392 (1995). https://doi.org/10.1007/BF02083547

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02083547

Key words

Navigation