Skip to main content
Log in

Expression of the mosquitocidal-protein genes ofBacillus thuringiensis subsp.israelensis and the herbicide-resistance genebar inSynechocystis PCC6803

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

CyanobacteriumSynechocystis PCC6803 was used as a model system for a prolonged delivery of insecticidal crystal proteins ofBacillus thuringiensis subsp.israelensis in the water surface. Thebt8 gene, encoding a 128 kDa (Bt8) mosquitocidal protein, and the28kd gene, encoding a 28 kDa cytotoxic protein, were integrated into the cyanobacterial chromosome. The genes were expressed under the control of thepsbA promoter, derived from the tobacco chloroplast genome. The Bt8 protein produced by the cyanobacterium was toxic to mosquito larvae. The28kd gene expression in the cyanobacterium was very low, partly owing to the low level of steady state mRNA. With the same system, it was demonstrated that the herbicide-resistance genebar could be used as a new selectable marker in cyanobacterial transformation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Adams LF, Visick JE, Whiteley HR (1989) A 20-kilodalton protein is required for efficient production of theBacillus thuringiensis subsp.israelensis 27-kilodalton crystal protein inEscherichia coli. J. Bacteriol 171:521–530

    Google Scholar 

  2. Anderson MLM, Young BD (1985) Quantitative filter hybridization, In: Hames BD, Higgins SJ (eds) Nucleic acid hybridisation, pp. 73–111

  3. Angsuthanasombat A, Panyim S (1989) Biosynthesis of 130-kilodalton mosquito larvicide in the cyanobacteriumAgmenellum quadruplicatum PR-6. Appl Environ Microbiol 55:2428–2430

    Google Scholar 

  4. Angsuthanasombat C, Chungjatupornchai W, Kurbundit S, Luxananil P, Settasatian C, Wilairat P, Panyim S (1987) Cloning and expression of 130-kd mosquito-larvicidal δ-endotoxin gene ofBacillus thuringiensis var.israelensis inEscherichia coli. Mol Gen Genet 208:384–389

    Google Scholar 

  5. Armstrong JL, Rohrmann GF, Beaudreau GS (1985) Delta endotoxin ofBacillus thuringiensis subsp.israelensis. J Bacteriol 161:39–46

    Google Scholar 

  6. Botterman J, Zabeau M (1987) A standardized vector system for manipulation and enhanced expression of genes inEscherichia coli. Gene 6:583–591

    Google Scholar 

  7. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  8. Casadaban MJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning inEscherichia coli. J Mol Biol 138:179–207

    Google Scholar 

  9. Chungjatupornchai W (1989) Characterization and expression of genes encoding mosquitocidal proteins ofBacillus thuringiensis inE. coli, Bacilli and cyanobacteria. Ph.D. thesis, Free University of Brussels, Belgium.

    Google Scholar 

  10. Chungjatupornchai W, Hofte H, Seurinck J, Angsuthanasombat C, Vaeck M (1988) Common features ofBacillus thuringiensis toxins specific for Diptera and Lepidoptera. Eur J Biochem 173:9–16

    Google Scholar 

  11. Cornelissen M, Vandewiele M (1989) Nuclear transcriptional activity of the tobacco plastidpsbA promoter. Nucleic Acids Res 17:19–29

    Google Scholar 

  12. De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Movva NR, Thompson C, Van Montagu M, Leemans J (1987) engineering herbicide-resistance plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518

    Google Scholar 

  13. Donovan WP, Dankocsik C, Gilbert MP (1988) Molecular characterization of a gene encoding a 72 kilodalton mosquitotoxic crystal protein fromBacillus thuringiensis subsp.israelensis. J Bacteriol 170:4732–4738

    Google Scholar 

  14. Jones JDG, Dunsmuir P, Bedbrook J (1985) High level expression of introduced chimaeric genes in regenerated transformed plants. EMBO J 4:2411–2418

    Google Scholar 

  15. Klung G, Adams CW, Belasco J, Doerge B, Cohen SN (1987) Biological consequences of segmental alterations in mRNA stability: effects of deletion of the intercistronic hairpin loop region of theRhodobacter capsulatus puf operon. EMBO J 6:3515–3520

    Google Scholar 

  16. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Springr Harbor Laboratory, New York: Cold Spring Habor Laboratory

    Google Scholar 

  17. McMaster GK, Carmichael GG (1977) Analysis of single and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci USA 74:4835–4838

    Google Scholar 

  18. Ohana B, Margalit J, Barak Z (1987) Fate ofBacillus thuringiensis subsp.israelensis under simulated field conditions. Appl Environ Microbiol 53:828–831

    Google Scholar 

  19. Rippka R, Deruelles J, Waterbury JB, Herman M, Stanier RY (1979) Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  20. Sugita M, Sugiura M (1984) Nucleotide sequence and transcription of the gene for the 32,000 dalton thylakoid membrane protein fromNicotiana tabacum. Mol Gen Genet 195:308–313

    Google Scholar 

  21. Tandeau de Marsac N, de la Torre F, Szulmajster J (1987) Expression of the larvicidal gene ofBacillus sphaericus 1593M in the cyanobacteriumAnacystis nidulans R2. Mol Gen Genet 209:396–398

    Google Scholar 

  22. Thompson CJ, Movva NR, Tizard R, Crameri R, Davis JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance genebar fromStreptomyces hygroscopicus. EMBO J 6:2519–2523

    Google Scholar 

  23. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Google Scholar 

  24. Vermaas W, Williams JGK, Arntzen CJ (1987) Sequencing and modification of psbB, the gene encoding the CP-47 protein of photosystemlI, in the cyanobacteriumSynechocystis 6803. Plant Mol Biol 8:317–326

    Google Scholar 

  25. Waalwijk C, Dullemans AM, Van Workum MES, Visser B (1985) Molecular cloning and the nucleotide sequence of the Mr 28000 crystal protein gene ofBacillus thuringiensis subsp.israelensis. Nucleic Acids Res 13:8207–8217

    Google Scholar 

  26. Ward ES, Ellar DJ (1987) Nucleotide sequence ofBacillus thuringiensis var.israelensis gene encoding a 130 kDa deltaendotoxin. Nucleic Acids Res 19:1795

    Google Scholar 

  27. Ward ES, Ridley AR, Ellar DJ, Todd JA (1986)Bacillus thuringiensis varisraelensis δ-endotoxin: encoding and expression of the toxin in sporogenic and asporogenic strains ofBacillus subtilis. J Mol Biol 191:13–22

    Google Scholar 

  28. Williams JGK (1988) Construction of specific mutations in photosystem II. Photosynthetic reaction center by genetic engineering methods inSynechocystis 6803. Methods Enzymol. 167:766–778

    Google Scholar 

  29. Wong HC, Chang S (1986) Identification of a positive retroregulator that stabilizes mRNAs in bacteria. Proc Natl Acad Sci USA 83:3233–3237

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chungjatupornchai, W. Expression of the mosquitocidal-protein genes ofBacillus thuringiensis subsp.israelensis and the herbicide-resistance genebar inSynechocystis PCC6803. Current Microbiology 21, 283–288 (1990). https://doi.org/10.1007/BF02092092

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02092092

Keywords

Navigation