Skip to main content
Log in

Navier-Stokes equations and area of interfaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present new a priori estimates for the vorticity of solutions of the three dimensional Navier-Stokes equations. These estimates imply that theL 1 norm of the vorticity is a priori bounded in time and that the time average of the 4/(3+ε) power of theL 4/(3+ε) spatial norm of the gradient of the vorticity is a priori bounded. Using these bounds we construct global Leray weak solutions of the Navier-Stokes equations which satisfy these inequalities. In particular it follows that vortex sheet, vortex line and even more general vortex structures with arbitrarily large vortex strengths are initial data which give rise to global weak solutions of this type of the Navier-Stokes equations. Next we apply these inequalities in conjunction with geometric measure theoretical arguments to study the two dimensional Hausdorff measure of level sets of the vorticity magnitude. We obtain a priori bounds on an average such measure, <μ>. When expressed in terms of the Reynolds number and the Kolmogorov dissipation length η, these bounds are

$$\left\langle \mu \right\rangle \leqq \frac{{L^3 }}{\eta }\left( {1 + \operatorname{Re} ^{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 2}} \right. \kern-\nulldelimiterspace} 2}} } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ,$$

The right-hand side of this inequality has a simple geometrical interpretation: it represents the area of a union of non-overlapping spheres of radii η which fill a fraction of the spatial domain. As the Reynolds number increases, this fraction decreases. We study also the area of level sets of scalars and in particular isotherms in Rayleigh-Benard convection. We define a quantity, 〈μ〉 r, t (x 0) describing an average value of the area of a portion of a level set contained in a small ball of radiusr about the pointx 0. We obtain the inequality

$$\left\langle \mu \right\rangle _{r,t} \left( {x_0 } \right) \leqq C_\kappa ,^{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 2}} \right. \kern-\nulldelimiterspace} 2}_r {5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-\nulldelimiterspace} 2}} \left\langle {v\left( {x_0 } \right)} \right\rangle ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ,$$

wherek is the diffusivity constant and <v> is the velocity. The inequality is valid forr small but larger than a small scale λ=k<v> −1. In the case of turbulent velocities this scale is smaller than the smallest significant physical scale, suggesting that 2.5 is a lower bound for the fractal dimension of an (ensemble) average interface in turbulent flow, a fact which agrees with the experimental lower bound of 2.35.

We define a similar quantity 〈μ〉 δ, t representing an average value of the area of a portion of a level set contained in the region of spaceD δ={xD; dist (x, δD)>δ}, whereD is the domain of aspect ratio of order one and diameterL, where the convection takes place. We obtain the inequality

$$\left\langle \mu \right\rangle _{\delta ,t} \leqq C\left( {L^3 \delta ^{ - 1} + L^{{5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-\nulldelimiterspace} 2}} \delta ^{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 2}} \right. \kern-\nulldelimiterspace} 2}} Ra^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } \right),$$

where Ra is the Rayleigh number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • [B] Batchelor, G. K.: The theory of homogeneous turbulence. Cambridge: Cambridge University Press

  • [C-F] Constantin, P., Foias, C.: Navier-Stokes Equations. Chicago, IL: The University of Chicago Press

  • [C-K-N] Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math.35, 771–831 (1982)

    Google Scholar 

  • [C-S] Cottet, G.H., Soler, J.: Three dimensional Navier-Stokes equations for singular filament initial data. J. Diff. Eqns74, 234–253 (1988)

    Article  Google Scholar 

  • [Chi] Castaing, B. Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X-Z., Zaleski, S., Zanetti, G.: Scaling of hard thermal turbulence in Rayleigh Benard convection, preprint

  • [Cho] Chorin, A.: Scaling laws in the vorticity lattice model of turbulence. Commun. Math. Phys.114, 167–176 (1988)

    Article  Google Scholar 

  • [D] Duff, G. F. D.: Derivative estimates for the Navier-Stokes equations in a three dimensional region, preprint (1988)

  • [F] Federer, H.: Geometric measure theory. Berlin, Heidelberg, New York: Springer

  • [F-G-T] Foias, C., Guillope, C., Temam, R.: New a priori estimates for Navier-Stokes equations in dimension 3. Commun. P.D.E.6, 329–359 (1981)

    Google Scholar 

  • [F-M-T] Foias, C., Manley, O., Temam, R.: Self-similar invariant families of turbulent flows. Phys. Fluid30, 2007–2020 (1987)

    Article  Google Scholar 

  • [Fo] Foias, C.: Private communication

  • [G-M] Giga, Y., Miyakawa, T.: Navier-Stokes flow in ℝ3 with measures as initial vorticity and Morrey spaces, preprint (1988)

  • [K] Kronrod, A. S.: On functions of two variables. Usp. Math. Nauk.5, 24–134 (1950) (Russian)

    Google Scholar 

  • [L] Leray, J.: Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math.63, 193–248 (1934)

    Google Scholar 

  • [M] Maz'ja, V. G.: Sobolev Spaces. Berlin, Heidelberg, New York: Springer

  • [S] Sreenivasan, K. R.: The physics of fully turbulent flows: Some recent contributions motivated by advances in dynamical systems, preprint (1989)

  • [T] Temam, R.: Navier-Stokes equations: theory and numerical analysis. Amsterdam, New York: North Holland

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.-T. Yau

Partially supported by NSF grant DMS-860-2031. Sloan Research Fellow

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constantin, P. Navier-Stokes equations and area of interfaces. Commun.Math. Phys. 129, 241–266 (1990). https://doi.org/10.1007/BF02096982

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02096982

Keywords

Navigation