Skip to main content
Log in

Asymptotic stability of solitary waves

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the family of solitary waves (1-solitons) of the Korteweg-de Vries equation

$$\partial _t u + u\partial _x u + \partial _x^3 u = 0 ,$$

is asymptotically stable. Our methods also apply for the solitary waves of a class of generalized Korteweg-de Vries equations,

$$\partial _t u + \partial _x f(u) + \partial _x^3 u = 0 .$$

In particular, we study the case wheref(u)=u p+1/(p+1),p=1, 2, 3 (and 3<p<4, foru>0, withfC 4). The same asymptotic stability result for KdV is also proved for the casep=2 (the modified Korteweg-de Vries equation). We also prove asymptotic stability for the family of solitary waves for all but a finite number of values ofp between 3 and 4. (The solitary waves are known to undergo a transition from stability to instability as the parameterp increases beyond the critical valuep=4.) The solution is decomposed into a modulating solitary wave, with time-varying speedc(t) and phase γ(t) (bound state part), and an infinite dimensional perturbation (radiating part). The perturbation is shown to decay exponentially in time, in a local sense relative to a frame moving with the solitary wave. Asp→4, the local decay or radiation rate decreases due to the presence of aresonance pole associated with the linearized evolution equation for solitary wave perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [AS] Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia, 1981

    Google Scholar 

  • [AGJ] Alexander, J., Gardner, R., Jones, C.K.R.T.: A topological invariant arising in the stability analysis of traveling waves. J. Reine Angew. Math.410, 167–212 (1990)

    Google Scholar 

  • [Be] Benjamin, T.B.: The stability of solitary waves. Proc. Roy. Soc. Lond.A328, 153–183 (1972)

    Google Scholar 

  • [Ber] Berryman, J.G.: Stability of solitary waves in shallow water. Phys. Fluids19, 771–777 (1976)

    Google Scholar 

  • [Bo] Bona, J.L.: On the stability of solitary waves. Proc. Roy. Soc. Lond.A344, 363–374 (1975)

    Google Scholar 

  • [BSc] Bona, J.L., Scott, R.: Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces. Duke Math J.43, 87–99 (1976)

    Google Scholar 

  • [BSm] Bona, J.L., Smith, R.: The initial value problem for the Korteweg-de Vries equation. Phil. Trans. Roy. Soc. Lond.A278, 555–601 (1975)

    Google Scholar 

  • [BSo] Bona, J.L., Soyeur, A.: On the stability of solitary wave solutions of model equations for long waves. J. Nonlin. Science

  • [BSS1] Bona, J.L., Souganidis, P.E., Strauss, W.A.: Stability and instability of solitary waves. Proc. Roy. Soc. Lond.A411, 395–412 (1987)

    Google Scholar 

  • [CL] Coddington, E., Levinson, N.: Theory of Ordinary Differential Equations. New York: McGraw-Hill, 1955

    Google Scholar 

  • [C] Coppel, W.A.: Stability and asymptotic behavior of differential equations. Boston: D.C. Heath and Co., 1965

    Google Scholar 

  • [CS] Crandall, M.G., Souganidis, P.E.: Convergence of difference approximations of quasilinear evolution equations. Nonl. Anal. TMA10, 425–445 (1986)

    Google Scholar 

  • [CH1] Crawford, J.D., Hislop, P.D.: Application of the method of spectral deformation to the Vlasov Poisson system. Ann. Phys.189, 265–317 (1989)

    Google Scholar 

  • [CH2] Crawford, J.D., Hislop, P.D.: Application of the method of spectral deformation to the Vlasov Poisson system II. Mathematical results. J. Math. Phys.30, 2819–2837 (1989)

    Google Scholar 

  • [DJ] Drazin, P.G., Johnson, R.S.: Solitons: An introduction. Cambridge: Cambridge University Press, 1989

    Google Scholar 

  • [E] Evans, J.W.: Nerve axon equations, IV: The stable and unstable impulse. Indiana Univ. Math. J.24, 1169–1190 (1975)

    Google Scholar 

  • [GGKM1] Gardner, C.S., Greene, J.M., Kruskal M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett.19, 1095–1097 (1967)

    Google Scholar 

  • [GGKM2] Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Korteweg-de Vries equation and generalizations. VI. Methods for exact solution. Commun. Pure Appl. Math.27, 97–133 (1974)

    Google Scholar 

  • [GKZ] Gesztesy, F., Karwowski, K., Zhao, Z.: New types of soliton solutions. Bull. Am. Math. Soc.27, 266–272 (1992)

    Google Scholar 

  • [GT] Ginibre, J., Tsutsumi, Y.: Uniqueness for the generalized Korteweg-de Vries equation. SIAM J. Math. Anal.20, 1388–1425 (1989)

    Google Scholar 

  • [H] Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lect. Notes in Math.840, New York: Springer, 1981

    Google Scholar 

  • [JK] Jeffrey, A., Kakutani, T.: Weakly nonlinear dispersive waves: A discussion centered about the Korteweg-de Vries equation. SIAM Review14, 582–643 (1972)

    Google Scholar 

  • [K1] Kato, T.: Quasilinear equations of evolution, with applications to partial differential equations. In: Spectral Theory and Differential Equations, A. Dold and B. Eckmann, (eds.), Lect. Notes in Math.448, New York: Springer, 1975

    Google Scholar 

  • [K2] Kato, T.: Perturbation Theory for Linear Operators. 2nd ed., New York: Springer, 1976

    Google Scholar 

  • [K3] Kato, T.: On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Stud. in Appl. Math. Suppl. Ser.8, New York: Academic Press, 1983

    Google Scholar 

  • [Ke] Keener, J.P.: Principles of Applied Mathematics, Redwood City: Addison-Wesley, 1988

    Google Scholar 

  • [KM] Keener, J.P., McLaughlin, D.W.: Solitons under perturbations. Phys. Rev.A 16, 777–790 (1977)

    Google Scholar 

  • [KA] Kodama, Y., Ablowitz, M.J.: Perturbations of solitons and solitary waves. Stud. in Appl. Math.64, 225–245 (1981)

    Google Scholar 

  • [KPV] Kenig, C., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg-de Vries equation. J.A.M.S.4, 323–347 (1991)

    Google Scholar 

  • [L] Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math.21, 467–490 (1968)

    Google Scholar 

  • [LP] Lax, P.D., Phillips, R.S.: Scattering Theory. New York: Academic Press, 1967

    Google Scholar 

  • [LS] Laedke, E.W., Spatschek, K.H.: Stability theorem for KdV type equations. J. Plasma Phys.32, 263–272 (1984)

    Google Scholar 

  • [M] Miura, R.M.: Korteweg-de Vries equation and generalizations I. A remarkable explicit nonlinear transformation. J. Math. Phys.9, 1202–1204 (1968)

    Google Scholar 

  • [Ne] Newell, A.C.: Near-integrable systems, nonlinear tunneling and solitons in slowly changing media. In: Nonlinear Evolution Equations Solvable by the Inverse Spectral Transform. F. Calogero, (ed.), London: Pitman, 1978, pp. 127–179

    Google Scholar 

  • [Ni] Nirenberg, L.: Topics in Nonlinear Functional Analysis. Courant Institute Lecture Notes, 1974

  • [P] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl. Math. Sci.44, New York: Springer, 1983

    Google Scholar 

  • [PW1] Pego, R.L., Weinstein, M.I.: On asymptotic stability of solitary waves. Phys. Lett. A162, 263–268 (1992)

    Google Scholar 

  • [PW2] Pego, R.L., Weinstein, M.I.: Eigenvalues, and instabilities of solitary waves. Phil. Trans. Roy. Soc. Lond.A340, 47–94 (1992)

    Google Scholar 

  • [PW3] Pego, R.L., Weinstein, M.I.: Evans' function, Melnikov's integral and solitary wave instabilities. In: Differential Equations with Applications to Mathematical Physics. (eds.) W.F. Ames, J.V. Herod, E.M. Harrell, Orlando: Academic Press, 1993

    Google Scholar 

  • [RS3] Reed, M., Simon, B.: Methods of Modern Mathematical Physics III: Scattering Theory. New York: Academic Press, 1979

    Google Scholar 

  • [RS4] Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. New York: Academic Press, 1978

    Google Scholar 

  • [Sa] Sattinger, D.H.: On the stability of waves of nonlinear parabolic systems. Adv. in Math.22, 312–355 (1976)

    Google Scholar 

  • [Sc] Schuur, P.C.: Asymptotic Analysis of Soliton Problems. Lect. Notes in Math.1232, Berlin New York: Springer 1986

    Google Scholar 

  • [SW1] Soffer, A., Weinstein M.I.: Multichannel nonlinear scattering theory for nonintegrable equations. In: Integrable Systems and Applications. Balabane, M., Lochak, P. and Sulem, C. (eds.), Springer Lect. Notes in Physics,342, 1988

  • [SW2] Soffer, A., Weinstein, M.I.: Multichannel nonlinear scattering theory for nonintegrable equations. Commun. Math. Phys.133, 119–146 (1990)

    Google Scholar 

  • [SW3] Soffer, A., Weinstein, M.I.: Multichannel nonlinear scattering theory for nonintegrable equations II: The case of anisotropic potentials and data. J. Diff. Eq.98, 376–390 (1992)

    Google Scholar 

  • [T] Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations. Oxford: Oxford University Press, 1946

    Google Scholar 

  • [V] Vainberg, B.: Asymptotic Methods in Equations of Mathematical Physics. New York: Gordon and Breach, 1989

    Google Scholar 

  • [W1] Weinstein, M.I.: On the solitary wave of the generalized Korteweg-de Vries equation. In: Proc. Santa Fe Conference on Nonlinear PDE, July 1984, Lectures in Appl. Math.23, 1986

  • [W2] Weinstein, M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal.16, 472–491 (1985)

    Google Scholar 

  • [W3] Weinstein, M.I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math.39, 51–68 (1986)

    Google Scholar 

  • [ZK] Zabusky, N., Kruskal, M.D.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett.15, 240–243 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Spencer

Supported by NSF Grants DMS 9196155 and 9201869

Supported by NSF Grant DMS 9201717

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pego, R.L., Weinstein, M.I. Asymptotic stability of solitary waves. Commun.Math. Phys. 164, 305–349 (1994). https://doi.org/10.1007/BF02101705

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101705

Keywords

Navigation