Skip to main content
Log in

Discrete Painlevé equations and their appearance in quantum gravity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss an algorithmic approach for both deriving discrete analogues of Painlevé equations as well as using such equations to characterize “similarity” reductions of spatially discrete integrable evolution equations. As a concrete example we show that a discrete analogue of Painlevé I can be used to characterize “similarity” solutions of the Kac-Moerbeke equation. It turns out that these similarity solutions also satisfy a special case of Painlevé IV equation. In addition we discuss a methodology for obtaining the relevant continuous limits not only at the level of equations but also at the level of solutions. As an example we use the WKB method in the presence of two turning points of the third order to parametrize (at the continuous limit) the solution of Painlevé I in terms of the solution of discrete Painlevé I. Finally we show that these results are useful for investigating the partition function of the matrix model in 2D quantum gravity associated with the measure exp [−t 1 z 2 −t 2 z 4 −t 3 z 6].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Painlevé, P.: Bull. Soc. Math. Fr.28, 214 (1900); Acta Math.25, 1 (1902); Gambier, B.: Acta Math.33, 1 (1909)

    Google Scholar 

  2. Ince, E. L.: Ordinary Differential Equations, (1927). New York: Dover 1956

    Google Scholar 

  3. Barouch, E., McCoy, B. M., Wu, T. T.: Phys. Rev. Lett.31, 1409 (1973); Wu, T. T., McCoy, B. M., Tracy, C. A., Barouch, E.: Phys. Rev.B13, 316 (1976)

    Article  Google Scholar 

  4. Jimbo, M., Miwa, T., Mori, Y., Sato, M.: PhysicaD1, 80 (1980); Jimbo, M., Miwa, T.: Proc. Jpn. Acad.A56, 405 (1980)

    Google Scholar 

  5. Ablowitz, M. J., Segur, H.: Phys. Rev. Lett.38, 1103 (1977)

    Article  Google Scholar 

  6. Flaschka, H., Newell, A. C.: Commun. Math. Phys.76, 67 (1980)

    Article  Google Scholar 

  7. Ueno, K.: Proc. Jpn. Acad.A56, 97 (1980); Jimbo, M., Miwa, T., Ueno, K.: PhysicaD2, 306 (1981); Jimbo, M., Miwa, T.: PhysicaD2, 407 (1981);4D, 47 (1981); Jimbo, M.: Prog. Theor. Phys.61, 359 (1979)

    Google Scholar 

  8. Fokas, A. S., Xin Zhou,: On the Solvability of Painlevé II and IV, Clarkson University, preprint INS #148, January 1990

  9. Brézin, E., Kazakov, V.: Phys. Lett.B236, 144 (1990)

    Article  Google Scholar 

  10. Douglas, M., Shenker, S.: Strings in Less than One Dimension, Rutgers preprint RU-89-34

  11. Gross, D., Migdal, A.: Phys. Rev. Lett.64, 127 (1990)

    Article  Google Scholar 

  12. Gross, D., Migdal, A.: A Nonperturbative Treatment of Two-Dimensional Quantum Gravity, Princeton preprint PUPT-1159 (1989)

  13. Douglas, M.: Strings in Less than One Dimension and the Generalized KdV Hierachies, Rutgers preprint RU-89-51

  14. Witten, E.: Two Dimensional Gravity and Intersection Theory on Moduli Space, IAS preprint, IASSNS-HEP-90/45

  15. Moore, G.: Geometry of the String Equations, Yale preprint YCTP-P4-90

  16. Moore, G.: Matrix Models of 2D Gravity and Isomonodromic Deformation, YCTP-P17-90, RU-90-53

  17. Kac, M., von Moerbeke, P.: Adv. Math.16, 160–164 (1975)

    Article  Google Scholar 

  18. Fokas, A. S., Manakov, S. V.: Phys. Lett.A150, 369 (1990)

    Article  Google Scholar 

  19. Nijhoff, F. W., Papageorgiou, V. G.: Similarity Reductions of Integrable Lattices and Discrete Analogues of Painlevé II Equation, INS #155, October 1990

  20. McCoy, M., Perk, H. H., Shrock, R. E.: Correlation Functions of the Transverse Ising Chain at the Critical Field for Large Temporal and Spatial Variations, ITP S13-83-5 (1983)

  21. Fokas, A. S., Mugan, U., Ablowitz, M. J.: PhysicaD30, 247 (1988)

    Google Scholar 

  22. Kapaev, A. A.: Asymptotics of Solutions of the Painlevé Equation of the First Kind, Differential Equations,24 (1988) (Russian)

  23. Its, A. R., Kitaev, A. V.: Mathematical Aspects of 2D Quantum Gravity, MPLA,5 (25), 2079 (1990)

    Article  Google Scholar 

  24. David, F.: Loop Equations and Non-Perturbative Effects in Two-Dimensional Quantum Gravity. MPLA,5 (13), 1019–1029 (1990)

    Article  Google Scholar 

  25. Brézin, E., Marinari, E., Parisi, G.: A Non-Perturbative Ambiguity Free Solution of a String Model, Roma preprint ROM2F-90-09

  26. Bessis, D., Itzykson, C., Zuber, I. B.: Quantum Field Theory Techniques in Graphical Enumeration. Adv. Appl. Math.1, 109–157 (1980)

    Article  Google Scholar 

  27. Its, A., Novokshenov, V. Yu.: The Isomonodromic Deformation Method in the Theory of Painlevé Equations. Lecture Notes Mathematics, vol.1191. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  28. Kapaev, A. A.: Quasinonlinear Solution of the EquationsP 21 , Zap. Sem. LOMI187, 88–110 (1990)

    Google Scholar 

  29. Fokas, A. S., Its, A. R., Kitaev, A. V.: The Isomonodromic Approach in the Theory of Two Dimensional Quantum Gravity. Uspehi Matem. Nauk.45 (6), 135–136 (1990) (Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N. Yu. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fokas, A.S., Its, A.R. & Kitaev, A.V. Discrete Painlevé equations and their appearance in quantum gravity. Commun.Math. Phys. 142, 313–344 (1991). https://doi.org/10.1007/BF02102066

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02102066

Keywords

Navigation