Skip to main content
Log in

An algorithm for the generalized symmetric tridiagonal eigenvalue problem

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper we present an algorithm, parallel in nature, for finding eigenvalues of a symmetric definite tridiagonal matrix pencil. Our algorithm employs the determinant evaluation, split-and-merge strategy and Laguerre's iteration. Numerical results on both single and multiprocessor computers are presented which show that our algorithm is reliable, efficient and accurate. It also enjoys flexibility in evaluating a partial spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Anderson et al.,LAPACK User's Guide (SIAM, Philadelphia, 1992).

    Google Scholar 

  2. A.E. Berger, J.M. Solomon and M. Ciment, Higher order accurate tridiagonal difference methods for diffusion convection equations, in:Advances in Computer Methods for Partial Differential Equations III, eds. R. Vichnevetsky and R.S. Stepleman (IMACS, 1978) pp. 322–330.

  3. C.F. Borges and W.B. Gragg, A parallel divide and conquer algorithm for the generalized real symmetric definite tridiagonal eigenproblem, preprint, Naval Post-Graduate School (1992).

  4. R.F. Boisvert, Families of higher order accurate discretizations of some elliptic problems, SIAM J. Sci. Stat. Comp. 2 (1981) 268–284.

    Google Scholar 

  5. L. Collatz,Numerical Treatment of Differential Equations (Springer, Berlin, 1960).

    Google Scholar 

  6. J.J.M. Cuppen, A divide-and-conquer method for the symmetric tridiagonal eigenproblem, Numer. Math. 36 (1981) 177–195.

    Google Scholar 

  7. J.J. Dongarra and D.C. Sorensen, A fully parallel algorithm for the symmetric eigenvalue problem. SIAM J. Sci. Stat. Comp. 8 (1987) 139–154.

    Google Scholar 

  8. G.H. Golub and Van Loan,Matrix Computations (The Johns Hopkins University Press, Baltimore, MD, 1989).

    Google Scholar 

  9. B. Grieves and D. Dunn Symmetric matrix methods for Schrödinger eigenvectors, J. Phys. A: Math. Gen. 23 (1990) 5479–5491.

    Google Scholar 

  10. W. Kahan, Notes on Laguerre's iteration, unpublished research notes (1992).

  11. L. Kaufman, An algorithm for the banded symmetric generalized matrix eigenvalue problem, SIAM J. Matrix Anal. Appl. 14 (1993) 372–389

    Google Scholar 

  12. K. Li and T.Y. Li, An algorithm for symmetric tridiagonal eigenproblems — divide and conquer with homotopy continuation, SIAM J. Sci. Comp. 14 (1993) 735–751.

    Google Scholar 

  13. K. Li and T. Y. Li, A homotopy algorithm for a symmetric generalized eigenproblem, Numer. Algor. 4 (1993) 167–195.

    Google Scholar 

  14. T.Y. Li and Z. Zeng, Laguerre's iteration in solving the symmetric tridiagonal eigenproblem — revisited, SIAM J. Sci. Comp., to appear.

  15. S-S. Lo, B. Phillipe and A. Sameh, A multiprocessor algorithm for the symmetric tridiagonal eigenvalue problems, SIAM J. Sci. Stat. Comp. 8 (1987) 155–165.

    Google Scholar 

  16. R.D. Pantazis and D.B. Szyld, A multiprocessor method for the solution of the generalized eigenvalue problem on an interval,Parallel Processing for Scientific Computing, Proc. 4th SIAM Conf., eds. J. Dongarra, P. Messina, D.G. Sorensen and R.G. Voigt (SIAM, Philadelphia, PA, 1990) pp. 36–41.

    Google Scholar 

  17. B.N. Parlett,The Symmetric Eigenvalue Problem (Prentice-Hall, Englenwood Cliffs, NJ, 1980).

    Google Scholar 

  18. B. Philippe and B. Vital, Parallel implementations for solving generalized eigenvalue problems with symmetric sparse matrices. App. Numer. Math. 12 (1993) 391–402.

    Google Scholar 

  19. Y.M. Ram and G.M.L. Gladwell, Constructing a finite-element model of a vibratory rod from eigendata, J. Sound Vibration 165 (1993).

  20. C.J. Ribbens and C. Beattie, Parallel solution of generalized symmetric tridiagonal eigenvalue problem on shared memory multiprocessors, Technical Report TR 92-47, Department of Computer Science, Virginia Polytechnic Institute and State University (1992).

  21. B.T. Smith et al.,Matrix Eigensystem Routines — EISPACK Guide, 2nd ed. (Springer, New York, 1976).

    Google Scholar 

  22. G. Strang and G. Fix,An Analysis of the Finite Element Method (Prentice-Hall, Englewood Cliffs, NJ, 1973).

    Google Scholar 

  23. C. Trefftz, P. McKinley, T.Y. Li and Z. Zeng, A scalable eigenvalue solver for symmetric tridiagonal matrices,Proc. 6th SIAm Conf. on Parallel Processing for Scientific Computing (SIAM, 1993) pp. 602–609.

  24. W. Weaver, Jr. and P.R. Johnson,Finite Elements for Structural Analysis (Prentice-Hall, NJ, 1984).

    Google Scholar 

  25. J.H. Wilkinson,The Algebraic Eigenvalue Problem (Oxford University Press, Oxford, 1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Brezinski

This research was supported in part by the Research Grant from University of West Florida.

This research was supported in part by NSF under Grant CCR-9024840.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, K., Li, TY. & Zeng, Z. An algorithm for the generalized symmetric tridiagonal eigenvalue problem. Numer Algor 8, 269–291 (1994). https://doi.org/10.1007/BF02142694

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02142694

Keywords

AMS (MOS) subject classification

Navigation