Skip to main content
Log in

Emission channeling

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Hyperfine interaction techniques like Mössbauer effect or perturbedγγ angular correlation are commonly applied to study the structure and properties of impurity-defect complexes in solids. It is often difficult to resolve a certain defect structure unambiguously with these techniques, because an absolute determination of the lattice site of the probe atoms is not straight-forward. The emission channeling technique allows the direct determination of lattice sites of radioactive impurity atoms, incorporated into single crystalline solids. The channeling effects of electrons, positrons or alpha particles, emitted from radioactive impurities are measured along different crystal axes and planes. From the measured anisotropic emission distributions the lattice sites of the emitting atoms can be determined. Emission channeling can be applied to a large variety of different probe atoms. Also, rather low impurity concentrations, comparable to those typically required for hyperfine interaction techniques, are sufficient. In this contribution, the principles of the emission channeling technique, the experimental requirements and the quantitative analysis of emission channeling spectra are reviewed. The capabilities and possibilities, which the emission channeling technique offers, are highlighted by three recent experimental studies. First, studies of the diffusion of Ag in CdTe using transmutation doping with the electron emitting isotopes107mAg and109mAg are described. Second, lattice location studies of As in diamond, which is a potential n-type dopant in this material, will be discussed. Third, an experiment is described to study the lattice location of oversized impurities after low dose implantation into Fe. In this experiment, the unique decay properties of221Fr and221 Ra are utilized to determine the lattice sites of five different impurity atoms in a singleα emission channeling measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Langouche, ed.,Hyperfine Interaction of Defects in Semiconductors (Elsevier, Amsterdam, 1992).

    Google Scholar 

  2. H. Hofsäss and G. Lindner, Phys. Rep. 201 (1991) 121.

    Article  Google Scholar 

  3. H. Hofsäss, S. Winter, S.G. Jahn, U. Wahl and E. Recknagel, Nucl. Instr. Meth. B 63 (1992) 83.

    Google Scholar 

  4. H. Hofsäss, U. Wahl and S.G. Jahn, Hyp. Int. 84 (1994) 27.

    Article  Google Scholar 

  5. B. Domeji and K. Bjørkvist, Phys. Lett. 14 (1965) 127.

    Google Scholar 

  6. E. Uggerhøj, Phys. Lett. 22 (1966) 382.

    Article  Google Scholar 

  7. L.C. Feldman, J.W. Mayer and S.T. Picreaux, eds.,Materials Analysis by Ion Channeling (Academic Press, New York, 1982).

    Google Scholar 

  8. L.C. Feldman and J.W. Mayer,Fundamentals of Surface and Thin Film Analysis (North-Holland, Amsterdam, 1986).

    Google Scholar 

  9. D.V. Morgan, ed.,Channeling (Wiley, New York, 1973).

    Google Scholar 

  10. J.W. Mayer and E. Rimini, eds.,Ion Beam Handbook for Materials Analysis (Academic Press, New York, 1977).

    Google Scholar 

  11. J.R. Tesner and M. Nastasi, eds.,Handbook of Modern Ion Beam Materials Analysis (Mater. Res. Soc., Pittsburgh, 1995).

    Google Scholar 

  12. W. Assmann, P. Hartung, H. Huber, P. Staat, H. Steffens and Ch. Steinhausen, Nucl. Instr. Meth. B 85 (1994) 726.

    Google Scholar 

  13. H. Hofsäss, U. Wahl, M. Restle, C. Ronning, E. Recknagel and S.G. Jahn, Nucl. Instr. Meth B 85 (1994).

  14. J. De Wachter, S. Blässer, H. Hofsäss, S. Jahn, M. Lindroos, R. Moons, H. Pattyn, M. Restle, A. Vantomme, U. Wahl, P. van Duppen and G. Langouche, Nucl. Instr. Meth. B (1995), to be published.

  15. S.G. Jahn, H. Hofsäss, U. Wahl, S. Winter and E. Recknagel, Appl. Surf. Sci. 50 (1991) 169.

    Article  Google Scholar 

  16. S. Winter, H. Hofsäss, S.G. Jahn, G. Lindner, U. Wahl and E. Recknagel, in:Hyperfine Interaction of Defects in Semiconductors, ed. G. Langouche (Elsevier, Amsterdam, 1992) pp. 157–185.

    Google Scholar 

  17. H. Hofsäss, M. Restle, U. Wahl and E. Recknagel, Nucl. Instr. Meth. B 80/81 (1993) 176.

    Google Scholar 

  18. A. Burchard, M. Restle, M. Deicher, H. Hofsäss, S.G. Jahn, Th. König, R. Magerle, W. Pfeiffer and U. Wahl, Physica B 185 (1993) 150.

    Google Scholar 

  19. M. Restle, K. Bharuth-Ram, H. Quintel, C. Ronning, H. Hofsäss, S.G. Jahn and U. Wahl, Appl. Phys. Lett. 66 (1995) 2733.

    Article  Google Scholar 

  20. K. Bharuth-Ram, H. Quintel, M. Restle, C. Ronning, H. Hofsäss and S.G. Jahn, J. Appl. Phys. 78 (1995) 5180.

    Article  Google Scholar 

  21. K. Bharuth-Ram, A. Burchard, M. Deicher, K. Freitag, H. Hofsäss, R. Magerle, H. Quintel, M. Restle, C. Ronning and S.G. Jahn, this conference.

  22. H. Quintel, K. Bharuth-Ram, M. Restle, C. Ronning and H. Hofsäss, Nucl. Instr. Meth. B (1995), to be published.

  23. Th. Wichert, G. Lindner, M. Deicher and E. Recknagel, Phys. Rev. B 24 (1981) 7467.

    Google Scholar 

  24. Th. Wichert, M. Deicher, G. Lindner, H. Hofsäss and E. Recknagel, Nucl. Instr. Meth. 218 (1983) 633.

    Article  Google Scholar 

  25. H. Hofsäss, G. Lindner, E. Recknagel and Th. Wichert, Nucl. Instr. Meth. B 2 (1984) 13.

    Google Scholar 

  26. H. Hofsäss, S. Winter, G. Lindner, M. Deicher, G. Grübel, Th. Wichert and E. Recknagel, Rad. Eff. 103 (1987) 1.

    Google Scholar 

  27. H. Hofsäss, G. Lindner, S. Winter, B. Besold, E. Recknagel and G. Weyer, Nucl. Instr. Meth. B 13 (1986) 71.

    Google Scholar 

  28. G. Lindner, H. Hofsäss, S. Winter, B. Besold, E. Recknagel, G. Weyer and J.W. Petersen, Phys. Rev. Lett. 57 (1986) 2283.

    Article  Google Scholar 

  29. D.L. Williamson, L. Niesen, G. Weyer, R. Sielemann and G. Langouche, in:Hyperfine Interactions of Defects in Semiconductors, ed. G. Langouche (Elsevier, Amsterdam, 1992) p. 1.

    Google Scholar 

  30. A. Metz and L. Niesen, J. Phys.: Condens. Matter 2 (1990) 1705.

    Article  Google Scholar 

  31. C. Hohenemser, A. Arends and H. de Waard, Phys. Rev. B 11 (1975) 4522.

    Google Scholar 

  32. C. Hohenemser, A.R. Arends, H. de Waard, H.G. Devare, F. Pleiter and S.A. Drentje, Hyp. Int. 3 (1977) 297.

    Article  Google Scholar 

  33. G. Weyer, Hyp. Int. 43 (1988) 187.

    Google Scholar 

  34. E. Danielsen, K.B. Nielsen, J.W. Petersen, M. Søndergaard and G. Weyer, Mater. Sci. For. 15-18 (1987) 669.

    Google Scholar 

  35. B. Besold, E. Danielsen, H. Hofsäss, G. Lindner, J.W. Petersen, E. Recknagel, M. Sondergaard, G. Weyer and S. Winter, Mater. Sci. For. 15–18 (1987) 665.

    Google Scholar 

  36. E. Kugler, D. Fiander, B. Jonson, H. Haas, A. Przewloka, H.L. Ravn, D.J. Simon and K. Zimmer, Nucl. Instr. Meth B 70 (1992) 40.

    Google Scholar 

  37. H. Hofsäss, M. Restle, U. Wahl and E. Recknagel, Nucl. Instr. Meth. B 80/81 (1993) 176.

    Google Scholar 

  38. G. Lindner, S. Winter, H. Hofsäss, S. Jahn, S. Blässer, E. Recknagel and G. Weyer, Phys. Rev. Lett. 63 (1989) 179.

    Article  PubMed  Google Scholar 

  39. U. Wahl, M. Restle, C. Ronning, H. Hofsäss and S.G. Jahn, Phys. Rev. B 50 (1994) 2176.

    Google Scholar 

  40. U. Wahl, S.G. Jahn, M. Restle, C. Ronning, H. Quintel, K. Bharuth-Ram and H. Hofsäss, Nucl. Instr. Meth. B (1995), to be published.

  41. U. Wahl, H. Hofsäss, S.G. Jahn, S. Winter and E. Recknagel, Nucl. Instr. Meth. B 64 (1992) 221.

    Google Scholar 

  42. E.J. Storbeck, S.H. Connell, J.P.F. Sellschop and H. Hofsäss, Nucl. Instr. Meth. B 85 (1994) 503.

    Google Scholar 

  43. E. Laegsgaard, Nucl. Instr. Meth. 162 (1979) 93.

    Article  Google Scholar 

  44. S. Winter, S. Blässer, H. Hofsäss, S. Jahn, G. Lindner, U. Wahl and E. Recknagel, Nucl. Instr. Meth. B 48 (1990) 211.

    Google Scholar 

  45. E. Lohmann, Th. Schaefer, M. Wehner and R. Vianden, Mater. Sci. For. 143-147 (1994) 1155.

    Google Scholar 

  46. S.G. Jahn, H. Hofsäss, M. Restle, C. Ronning, H. Quintel and K. Bharuth-Ram,Proc. IBMM95, Canberra, February 1995, to be published.

  47. S.G. Jahn, H. Hofsäss, M. Restle, C. Ronning, H. Quintel, K. Bharuth-Ram and U. Wahl,Proc. EMRS Spring Meeting, Strasbourg, May 1995, to be published.

  48. A. Howie, in:Diffraction and Imaging Techniques in Materials Science, 2nd Ed., eds. S. Amelinckx and R. Gevers (North-Holland, Amsterdam, 1978) p. 457.

    Google Scholar 

  49. J.H. Barrett, Phys. Rev. B 3 (1971) 1527.

    Google Scholar 

  50. J.H. Barrett, Phys. Rev. 166 (1968) 219.

    Article  Google Scholar 

  51. P.J.M. Smulders and D.O. Boerma, Nucl. Instr. Meth. B 29 (1987) 471.

    Google Scholar 

  52. W. Eckstein,Computer Simulation of Ion Solid Interaction (Springer, Berlin, 1991).

    Google Scholar 

  53. J. U. Andersen and E. Uggerhoj, Can. J. Phys. 46 (1986) 517.

    Google Scholar 

  54. U. Wahl, Emission channeling studies of Li in semiconductors, Phys. Rep. (1996), to be published.

  55. J. F. Ziegler, J.P. Biersack and U. Littmark,Stopping and Ranges of Ions in Solids (Pergamon, New York, 1985).

    Google Scholar 

  56. H. Hofsäss, B. Besold, G. Lindner, S. Winter, E. Recknagel and G. Weyer, in:Relativistic Channeling, ASI Series B, Vol. 165, eds. R.A. Carrigan and J.A. Ellison (Plenum, New York, 1987) p. 483.

    Google Scholar 

  57. S.K. Andersen, F. Bell, F. Frandsen and E. Uggerhøj, Phys. Rev. B 8 (1973) 4913.

    Google Scholar 

  58. P. Lervig, J. Linhard and V. Nielsen, Nucl. Phys. A 96 (1967) 481.

    Google Scholar 

  59. J.U. Andersen, S.K. Andersen and W.M. Augustyniak, Mat. Fys. Medd. Dan. Vid. Selsk. 39 (1977).

  60. P.A. Doyle and P.S. Turner, Acta Cryst. A 24 (1968) 390.

    Google Scholar 

  61. J.U. Andersen, E. Bonderup and E. Laegsgaard, in:Coherent Radiation Sources, eds. A.W. Sáenz and H. Überall (Springer, Berlin, 1985) p. 127.

    Google Scholar 

  62. J.U. Andersen, E. Bonderup, E. Laegsgaard, B.B. Marsh and A.H. Sørensen, Nucl. Instr. Meth. 194 (1982) 209.

    Article  Google Scholar 

  63. O.H. Nielsen, F.K. Larsen, S. Damgaard, J.W. Petersen and G. Weyer, Z. Phys. B 52 (1983) 99.

    Article  Google Scholar 

  64. E. Molva, J.M. Francou, J.L. Pautrat, K. Saminadayar and Le Si Dang, J. Appl. Phys. 56 (1984) 2241.

    Article  Google Scholar 

  65. J. Tregilgas and B. Gnade, J. Vac. Sci. Technol. A 3 (1985) 156.

    Google Scholar 

  66. R. Krause-Rehberg, H. Zimmermann, A. Klimakow and Th. Dorst, Phys. Stat. Sol. (a) 134 (1992) K45.

    Google Scholar 

  67. E. Molva, J.L. Pautrat, K. Saminadayer, G. Milchberg and N. Magnea, Phys. Rev. B 30 (1984) 3344.

    Google Scholar 

  68. J.P. Chamonal, E. Molva, J.P. Pautrat and L. Revoil, J. Cryst. Growth 59 (1984) 297.

    Article  Google Scholar 

  69. B. Monemar, E. Molva and Le Si Dang, Phys. Rev. B 33 (2) (1986) 1134.

    Google Scholar 

  70. A. Alexenko and E. Spitsyn, Diam. Relat. Mater. 1 (1992) 705.

    Article  Google Scholar 

  71. J.F. Prins, Phys. Rev. B 38 (1988) 5576.

    Google Scholar 

  72. S.A. Kajihara, A. Antonelli and J. Bernholc, Phys. Rev. Lett. 66 (1991) 2010.

    Article  Google Scholar 

  73. M.S. Dresselhaus and R. Kalish,Ion Implantation in Diamond, Graphite and Related Materials (Springer, Berlin, 1992) pp. 78ff.

    Google Scholar 

  74. J. Wilks and E. Wilks,Properties and Applications of Diamond (Butterworth, Oxford, 1991) p. 167.

    Google Scholar 

  75. V.S. Vavilov, E.A. Konorova, E.B. Stephanova and E.M. Trukan, Sov. Phys. Semicond. 13 (1979) 635.

    Google Scholar 

  76. G. Braunstein and R. Kalish, Appl. Phys. Lett. 38 (1981) 416.

    Article  Google Scholar 

  77. Z.H. Zhang, X.T. Cui and W.K. Chu, Nucl. Instr. Meth. B (1995), to be published.

  78. S. Prawer, C. Uzan-Saguy, G. Braunstein and R. Kalish, Appl. Phys. Lett. 63 (1993) 847.

    Article  Google Scholar 

  79. G. Braunstein and R. Kalish, Nucl. Instr. Meth 182/183 (1981) 691.

    Article  Google Scholar 

  80. S.M. Rotner, Yu.M. Rotner, G.V. Krishchuk, E.M. Khrakovskaya, N.S. Stephanova and V.A. Laptev, Sov. Phys. Semicond. 17 (1983) 128.

    Google Scholar 

  81. S.M. Gorbatkin, R.A. Zuhr, J. Roth and H. Naramoto, J. Appl. Phys. 70 (1991) 2986.

    Article  Google Scholar 

  82. J.D. Hunn, J.R. Parikh, M.L. Swanson and R.A. Zuhr, Diam. Relat. Mater. 2 (1993) 847.

    Article  Google Scholar 

  83. O. Meyer and A. Turos, Mater. Sci. Rep. 2 (1987) 371.

    Article  Google Scholar 

  84. M. Lindroos, H. Haas, J. De Wachter, H. Pattyn and G. Langouche, Nucl. Instr. Meth. B 64 (1992) 256.

    Google Scholar 

  85. M. Lindroos, P. Richards, J. De Wachter, U. Wahl, H. Haas, H. Pattyn, J. Rikovska, N.J. Stone, G. Langouche, K. Nishimura, I.S. Oliviera and M. Veskovic, Hyp. Int. 79 (1993) 799.

    Article  Google Scholar 

  86. J. Wouters, N. Severijns, J. Vanhaverbeke, W. Vanderpoorten and L. Vanneste, Hyp. Int. 61 (1990) 1391.

    Google Scholar 

  87. H. Schultz, in:Proc. Int. Conf. on Point Defects and Defect Interactions in Metals, eds. J.I. Takamura, M. Doyama and M. Kiritani (North-Holland, Amsterdam, 1981) p. 183.

    Google Scholar 

  88. H. Ackermann, N.T. Bagraev, R.T. Harley and J. Schneider, in:Hyperfine Interactions of Defects in Semiconductors, ed. G. Langouche (Elsevier, Amsterdam, 1992) p. 323.

    Google Scholar 

  89. G. Langouche, Hyp. Int. 84 (1994) 279.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofsäss, H. Emission channeling. Hyperfine Interact 97, 247–283 (1996). https://doi.org/10.1007/BF02150180

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02150180

Keywords

Navigation