Skip to main content
Log in

L-Splines

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we study the problem of unique interpolation and approximation by a class of spline functions,L-splines, containing as special cases the deficient and generalized spline functions ofAhlberg, Nilson, andWalsh [3, 5, 6], the Chebyshevian spline functions ofKarlin andZiegler [27], and the piecewise Hermite polynomial functions, as considered in [17]. We first give sufficient conditions for unique interpolation byL-spline functions in Section 2. Then, we obtain newL andL 2 error estimates for interpolation byL-splines in Section 4, and show that these error estimates are, in a certain sense, sharp. In addition, we make a similar study for theg-splines ofSchoenberg, cf. [44, 3], in Section 5. In Section 6, an application of these new error estimates is made to the analysis of the error made in the use of finite dimensional subspaces ofL-splines andg-splines. in the Rayleigh-Ritz procedure for the class of nonlinear two-point boundary value problems studied in [17].

Because of the rapid growth of the number of papers devoted to or connected with the topic of splines, we believe that a compilation of papers on splines for the reader's use is desirable, and such a list is found in the References at the end of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlberg, J. H., andE. N. Nilson: Convergence properties of the spline fit. SIAM J. Appl. Math.11, 95–104 (1963).

    Article  Google Scholar 

  2. —— Orthogonality properties of spline functions. J. Math. Anal. Appl.11, 321–337 (1965).

    Article  Google Scholar 

  3. —— The approximation of linear functionals. SIAM J. Numer. Anal.3, 173–182 (1966).

    Article  Google Scholar 

  4. ——, andJ. L. Walsh: Higher-order spline interpolation. Notices Amer. Math. Soc.11, 767 (1964) (abstract).

    Google Scholar 

  5. ——— Fundamental properties of generalized splines. Proc. Nat. Acad. Sci. U.S.A.52, 1412–1419 (1964).

    Google Scholar 

  6. ——— Convergence properties of generalized splines. Proc. Nat. Acad. Sci. U.S.A.54, 344–350 (1965).

    Google Scholar 

  7. ——— Best approximation and convergence properties for higher order spline approximations. J. Math. Mech.14, 231–244 (1965).

    Google Scholar 

  8. ——— Extremal, orthogonality, and convergence properties of multidimensional splines. J. Math. Anal. Appl.12, 27–48 (1965).

    Article  Google Scholar 

  9. ——— The theory of splines and their applications. New York: Academic Press 1967.

    Google Scholar 

  10. Birkhoff, G., H. Burchard, andD. Thomas: Nonlinear interpolation by splines, pseudo-splines, and elastica. Research Publication General Motors Corporation GMR 468 (1965).

  11. — andC. De Boor: Error bounds for spline interpolation. J. Math. Mech.13, 827–836 (1964).

    Google Scholar 

  12. —— Piecewise polynomial interpolation and approximation. Approximation of Functions,H. L. Garabedian (ed.) (pp. 164–190). Amsterdam: Elsevier Publishing Company 1965.

    Google Scholar 

  13. ——B. Swartz, andB. Wendroff: Rayleigh-Ritz approximation by piecewise cubic polynomials. SIAM J. Numer. Anal.3, 188–203 (1966).

    Article  Google Scholar 

  14. — andH. L. Garabedian: Smooth surface interpolation. J. Math. and Phys.39, 258–268 (1960).

    Google Scholar 

  15. Boor, C. De: Bicubic spline interpolation. J. Math. and Phys.41, 212–218 (1962).

    Google Scholar 

  16. — Best approximation properties of spline functions of odd degree. J. Math. Mech.12, 747–749 (1963).

    Google Scholar 

  17. —: On splines and their minimum properties. J. Math. Mech.15, 953–969 (1966).

    Google Scholar 

  18. Ciarlet, P. G., M. H. Schultz, andR. S. Varga: Numerical methods of highorder accuracy for nonlinear boundary value problems. I. One dimensional problem. Numer. Math.9, 394–430 (1967).

    Google Scholar 

  19. Curry, H. B., andI. J. Schoenberg: On Pólya frequency functions IV. The fundamental spline functions and their limits. J. Analyse Math.17, 71–107 (1966). (MRC Tech. Summary Report 567 (1965).)

    Google Scholar 

  20. Favard, J.: Sur l'interpolation. J. Math. Pures Appl. (9)19, 281–306 (1940).

    Google Scholar 

  21. Fowler, A. H., and C. W. Wilson: Cubic spline, a curve fitting routine. Report Y-1400, Oak Ridge (1963).

  22. Golomb, M., andH. F. Weinberger: Optimal approximation and error bounds. Proc. Symp. on Numerical Approximation,R. E. Langer (ed.) (pp. 117–190). Madison: Univ. of Wisconsin Press 1959

    Google Scholar 

  23. Greville, T. N. E.: Numerical procedures for interpolation by spline functions. SIAM J. Numer. Anal.1, 53–68 (1965). (MRC Tech. Summary Report 450 (1964).)

    Article  Google Scholar 

  24. — Interpolation by generalized spline functions. MRC Tech. Summary Report 476 (1964).

  25. — Spline functions, interpolation, and numerical quadrature. Mathematical Methods for Digital Computers, Volume 2,A. Ralston andH. S. Wilf (eds.) (pp. 156–168). New York: John Wiley and Sons 1967.

    Google Scholar 

  26. Holladay, J. C.: Smoothest curve approximation. Math. Tables Aids to Comp.11, 233–243 (1957).

    Google Scholar 

  27. Johnson, R. S.: On monosplines of least deviation. Trans. Amer. Math. Soc.96, 458–477 (1960).

    Google Scholar 

  28. Karlin, S., andZ. Ziegler: Tchebycheffian spline functions. SIAM J. Numer. Anal.3, 514–543 (1966).

    Article  Google Scholar 

  29. —, andW. J. Studden: Tchebycheff Systems: With Applications in Analysis and Statistics. New York: Interscience 1966.

    Google Scholar 

  30. Loscalzo, F. R., andT. D. Talbot: Spline function approximations for solutions of ordinary differential equations (6 pp.). MMS. from Computer Sciences Dept., Univ. of Wisconsin 1966.

  31. MacLaren, D. H.: Formulas for fitting a spline curve through a set of points. Boeing Appl. Math. Report 2 (1958).

  32. Marsden, M., andI. J. Schoenberg: On variation diminishing spline approximation methods (27 pp.). MRC Tech. Summary Report 694 (1966).

  33. Meyers, L. F., andA. Sard: Best interpolation formulas. J. Math. and Phys.29, 198–206 (1950).

    Google Scholar 

  34. Sard, A.: Best approximate integration formulas; best approximation formulas. Amer. J. Math.71, 80–91 (1949).

    Google Scholar 

  35. — Linear Approximation, Math. Surveys No. 9. Providence, R. I.: Amer, Math. Soc. 1963.

  36. Schoenberg, I. J.: Contributions to the problem of approximation of equidistant data by analytic functions. Parts A and B. Quart. Appl. Math.4, 45–99, 112–141 (1946).

    Google Scholar 

  37. — On Pólya frequency functions I. The totally positive functions and their Laplace transforms. J. Analyse Math.1, 351–374 (1951).

    Google Scholar 

  38. — Spline functions, convex curves and mechanical quadrature. Bull. Amer. Math. Soc.64, 352–357 (1958)

    Google Scholar 

  39. — On best approximations of linear operators. Nederl. Akad. Wetensch. Ser. A67, 155–163 (1964) and Indag. Math.26, 155–163 (1964).

    Google Scholar 

  40. — Spline interpolation and best quadrature formulae. Bull. Amer. Math. Soc.70, 143–148 (1964).

    Google Scholar 

  41. — Spline interpolation and the higher derivatives. Proc. Nat. Acad. Sci. U.S.A.51, 24–28 (1964).

    Google Scholar 

  42. — On trigonometric spline interpolation. J. Math. Mech.13, 795–825 (1964).

    Google Scholar 

  43. — On monosplines of least deviation and best quadrature formulae. SIAM J. Numer. Anal. Ser. B2, 144–170 (1965).

    Article  Google Scholar 

  44. — On interpolation by spline functions and its minimal properties. Proc. Conf. on Approximation Theory in, Germany 1963 (pp. 109–129). Basel: Birkhauser 1964.

    Google Scholar 

  45. — On monosplines of least square deviation and best quadrature formulae II. SIAM J. Numer. Anal.3, 321–328 (1966).

    Article  Google Scholar 

  46. — On spline functions (52 pp.). MRC Tech. Summary Report 625 (1966).

  47. — On Hermite-Birkhoff interpolation (9 pp.). MRC Tech. Summary Report 659 (May 1966).

  48. —On the Ahlberg-Nilson extension of spline interpolation: theg-splines and their optimal properties (35 pp.). MRC Tech. Summary Report 716 (1966).

  49. Schoenberg, I. J., andAnne Whitney: Sur la positivité des déterminants de translation des functions de fréquence de Pólya, aver une application à un problèm d'interpolation. C. R. Acad. Sci. Paris228, 1996–1998 (1949).

    Google Scholar 

  50. —— On Pólya frequency functions. III. The positivity of translation determinants with an application to the interpolation problem by spline curves. Trans. Amer. Math. Soc.74, 246–259 (1953).

    Google Scholar 

  51. Schweikert, D. G.: The spline in tension (hyperbolic spline) and the reduction of extraneous inflection points (82 pp.). Ph. D. Thesis, Brown University (1966).

  52. Secrest, D.: Error bounds for interpolation and differentiation by the use of spline functions. SIAM J. Numer. Anal.2, 440–447 (1965).

    Article  Google Scholar 

  53. Sharma, A., andA. Meir: Degree of approximation of spline interpolation. J. Math. Mech.15, 759–767 (1966).

    Google Scholar 

  54. Thacher, H., ed.: Numerical properties of functions of more than one independent variable. Ann. New York Acad. Sci.86, 677–874 (1960).

    Google Scholar 

  55. Walsh, J. L., J. H. Ahlberg, andE. N. Wilson: Best approximation properties of the spline fit. J. Math. Mech.11, 225–234 (1962).

    Google Scholar 

  56. ——— Best approximation and convergence properties of higher order spline fits. Notices Amer. Math. Soc.10, 202 (1963) (abstract).

    Google Scholar 

  57. Weinberger, H. F.: Optimal approximation for functions prescribed at equally spaced points. J. Res. Nat. Bur. Standards Sect. B65 B, 99–104 (1961).

    Google Scholar 

  58. Wendroff, B.: Bounds for eigenvalues of some differential operators by the Rayleigh-Ritz method. Math. Comp.19, 218–224 (1965).

    Google Scholar 

  59. Whittaker, E. T.: On the functions which are represented by the expansions of the interpolation-theory. Proc. Roy. Soc. Edinburgh35, 181–194 (1915).

    Google Scholar 

  60. Coddington, E. A., andN. Levinson: Theory of ordinary differential equations. New York: McGraw-Hill Book Co. 1955.

    Google Scholar 

  61. Hardy, G. H., J. E. Littlewood, andG. Pólya: Inequalities. Cambridge: Cambridge University Press 1952.

    Google Scholar 

  62. Hartman, P.: Ordinary differential equations. New York: John Wiley and Sons, Inc. 1964.

    Google Scholar 

  63. Opial, Z.: On a theorem of O. Aramă. J. Differential Equations.3, 88–91 (1967.

    Article  Google Scholar 

  64. Pólya, G.: On the mean value theorem corresponding to a given linear homogeneous differential equation. Trans. Amer. Math. Soc.24, 233–243 (1922).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by NSF Grant GP-5553

Papers not specifically concerned with splines are referred to in the text by [1′, 2′], etc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultz, M.H., Varga, R.S. L-Splines. Numer. Math. 10, 345–369 (1967). https://doi.org/10.1007/BF02162033

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02162033

Keywords

Navigation