Skip to main content
Log in

Moment closure hierarchies for kinetic theories

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper presents a systematicnonperturbative derivation of a hierarchy of closed systems of moment equations corresponding to any classical kinetic theory. The first member of the hierarchy is the Euler system, which is based on Maxwellian velocity distributions, while the second member is based on nonisotropic Gaussian velocity distributions. The closure proceeds in two steps. The first ensures that every member of the hierarchy is hyperbolic, has an entropy, and formally recovers the Euler limit. The second involves modifying the collisional terms so that members of the hierarchy beyound the second also recover the correct Navier-Stokes behavior. This is achieved through the introduction of a generalization of the BGK collision operator. The simplest such system in three spatial dimensions is a “14-moment” closure, which also recovers the behavior of the Grad “13-moment” system when the velocity distributions lie near local Maxwellians. The closure procedure can be applied to a general class of kinetic theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Arkeryd, R. Esposito, and M. Pulverenti, the Boltzmann equation for weakly inhomogeneous data,Commun. Math. Phys. 111:393–407 (1987).

    Google Scholar 

  2. C. Bardos, F. Golse, and D. Levermore, Fluid dynamic limits of kinetic equations I: Formal derivations,J. Stat. Phys. 63:323–344 (1991).

    Google Scholar 

  3. P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases I: Small amplitude processes in charged and neutral one-component systems,Phys. Rev. 94:511–524 (1954).

    Google Scholar 

  4. G. A. Bird,Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, (1994).

    Google Scholar 

  5. A. V. Bobylev, The Chapman-Enskog and Grad methods for solving the Boltzmann equation,Sov. Phys. Dokl. 27:29–31 (1982).

    Google Scholar 

  6. L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen,Sitzungsber. Akad. Wiss. Wien 66:275–370 (1982); English transl., Further studies on the thermal equilibrium of gas molecules, inKinetic Theory, Vol. 2, S. G. Brush, ed., (Pergamon Press, London, 1966), pp. 88–174.

    Google Scholar 

  7. C. Cercignani,The Boltzmann Equation and Its Applications (Springer-Verlag, New York, 1988).

    Google Scholar 

  8. G. Q. Chen, C. D. Levermore, and T. P. Liu, Hyperbolic conservation laws with Stiff relaxation terms and entropy,Commun. Pure Appl. Math. 47:787–830 (1994).

    Google Scholar 

  9. L. Desvillettes, Some applications of the method of moments for the homogeneous Boltzmann and Kac equations,Arch. Rat. Mech. Anal. 123:387–404 (1994).

    Google Scholar 

  10. W. Dreyer, Maximisation of the entropy in non-equilibrium,J. Phys. A: Math. Gen. 20:6505–6517 (1987).

    Google Scholar 

  11. T. Elmroth, Global bounds of moments of solutions of the Boltzmann equation for forces of infinite range,Arch. Rat. Mech. Anal. 82:1–12 (1983).

    Google Scholar 

  12. K. O. Friedrichs and P. D. Lax, Systems of conservation laws with a convex extension,Proc. Natl. Acad. Sci. USA 68:1686–1688 (1971).

    Google Scholar 

  13. S. K. Godunov, An interesting class of quasilinear systems,Sov. Math. Dokl. 2:947–949 (1961).

    Google Scholar 

  14. F. Golse and F. Poupoud. Stationary solutions of the linearized Boltzmann equation in a half-space,Math. Meth. Appl. Sci. 11:483–502 (1989).

    Google Scholar 

  15. T. I. Gombosi, C. P. T. Groth, P. L. Roe, and S. L. Brown, 35-moment closure for rarefied gases: Derivation, transport equations, and wave structure,Phys. Fluids, submitted (1994).

  16. A. N. Gorbin and I. V. Karlin Thermodynamic parameterization,Physica A: Math. Gen. 190:393–404 (1992).

    Google Scholar 

  17. A. N. Gorbin and I. V. Karlin Method of invariant manifolds and the regularization of acoustic spectra,Transport Theory Stat. Phys. 23:559–632.

  18. H. Grad, On the kinetic theory of rarefied gases,Commun. Pure Appl. Math. 2:331–407 (1949).

    Google Scholar 

  19. C. P. T. Groth and C. D. Levermore, Beyond the Navier-Stokes approximation: Transport corrections to the Gaussian closure, in preparation (1996).

  20. A. Harten, On the symmetric form of systems of conservation laws with entropy,J. Comp. Phys. 49:151–164 (1983).

    Google Scholar 

  21. A. Harten, P. D. Lax, C. D. Levermore, and W. J. Morokoff, Convex entropies and hyperbolicity for general Euler equations,SIAM J. Num. Anal., submitted (1995).

  22. F. Hertweck, Allgemeine 13-Momenten-Näherung zur Fokker-Planck Gleichung eins Plasmas,Z. Naturforsch. 20a:1243–1255 (1965).

    Google Scholar 

  23. L. H. Holway, Kinetic theory of shock structure using an ellipsoidal distribution function, inRarefied Gas Dynamics, Vol. I, C. L. Brundin, ed. (Academic Press, New York, 1966), pp. 759–784.

    Google Scholar 

  24. S. Jin and C. D. Levermore, Numerical schemes for hyperbolic conservation laws with stiff relaxation terms,J. Comp. Phys., accepted (1996).

  25. P. D. Lax,Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves (SIAM, Philadelphia, 1973).

    Google Scholar 

  26. C. D. Levermore, Entropic convergence and the linearized limit for the Boltzmann equation,Commun. Partial Differential Equations 18:1231–1248 (1993).

    Google Scholar 

  27. C. D. Levermore, W. J. Morokoff, and B. T. Nadiga, Moment realizability and the validity of the Navier-Stokes approximation for rarefied gas dynamics,Phys. Fluids, submitted (1995).

  28. C. D. Levermore and W. J. Morokoff, The Gaussian closure for the Boltzmann equation,SIAM J. Appl. Math., submitted (1996).

  29. C. D. Levermore and B. A. Wagner, Robust fluid dynamical closures of the Broadwell model,Phys. Lett. A 174:220–228 (1993).

    Google Scholar 

  30. A. Majda,Compressible Fluid Flow and Systems of conservation Laws in Several Space Dimensions (Springer-Verlag, New York, 1984).

    Google Scholar 

  31. J. C. Maxwell, On the dynamical theory of gases,Phil. Trans. R. Soc. Lond. 157:49–88 (1866); also inThe Scientific Papers of James Clerk Maxwell, Vol. 2 (Dover, New York, 1965), pp. 26–78.

    Google Scholar 

  32. M. Mock, Systems of conservation laws of mixed type.J. Differential Equations 37:70–88 (1980).

    Google Scholar 

  33. I. Müller and T. Ruggeri,Extended Thermodynamics (Springer-Verlag, New York, 1993).

    Google Scholar 

  34. P. Rosenau, Extending hydrodynamics via the regularization of the Chapman-Enskog expansion,Phys. Rev. A 40:7193–7196 (1989).

    Google Scholar 

  35. B. Wennberg, On moments and uniqueness for solutions to the space homogeneous Boltzmann equation,Trans. Theory Stat. Phys. 23:533–539 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levermore, C.D. Moment closure hierarchies for kinetic theories. J Stat Phys 83, 1021–1065 (1996). https://doi.org/10.1007/BF02179552

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179552

Key Words

Navigation