Skip to main content
Log in

Ground-state structure in a highly disordered spin-glass model

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We propose a new Ising spin-glass model on Zd of Edwards-Anderson type, but with highly disordered coupling magnitudes, in which a greedy algorithm for producing ground states is exact. We find that the procedure for determining (infinite-volume) ground states for this model can be related to invasion percolation with the number of ground states identified as 2N, whereN=N(d) is the number of distinct global components in the “invasion forest.” We prove thatN(d)=∞ if the invasion connectivity function is square summable. We argue that the critical dimension separatingN=1 andN=∞ isd c=8. WhenN(d)=∞, we consider free or periodic boundary conditions on cubes of side lengthL and show that frustration leads to chaoticL dependence withall pairs of ground states occurring as subsequence limits. We briefly discuss applications of our results to random walk problems on rugged landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Aizenman, J. Chayes, L. Chayes, and C. M. Newman,J. Stat. Phys. 50:1 (1988).

    Google Scholar 

  2. M. Aizenman and C. M. Newman,J. Stat. Phys. 36:107 (1984).

    Google Scholar 

  3. K. S. Alexander,Ann. Prob. 23:87 (1995).

    Google Scholar 

  4. K. Binder and A. P. Young,Rev. Mod. Phys. 58:801 (1986).

    Google Scholar 

  5. A. Bovier and J. Fröhlich,J. Stat. Phys. 44:347 (1986).

    Google Scholar 

  6. A. J. Bray and M. A. Moore, inHeidelberg Colloquium in Glassy Dynamics, J. L. van Hemmen and I. Morgenstern, eds. (Springer-Verlag, Berlin, 1987). A. J. Bray and M. A. Moore,Phys. Rev. Lett. 58:57 (1987).

    Google Scholar 

  7. S. Caracciolo, G. Parisi, S. Patarnello, and N. Sourlas,J. Phys. France 51:1877 (1990).

    Google Scholar 

  8. R. Chandler, J. Koplick, K. Lerman, and J. F. Willemsen,J. Fluid Mech. 119:249 (1982).

    Google Scholar 

  9. J. T. Chayes, L. Chayes, and C. M. Newman,Commun. Math. Phys. 101:383 (1985).

    Google Scholar 

  10. M. Cieplak, A. Maritan, and J. R. Banavar,Phys. Rev. Lett. 72:2320 (1994).

    Google Scholar 

  11. S. Edwards and P. W. Anderson,J. Phys. F 5:965 (1975).

    Google Scholar 

  12. J. W. Essam,Rep. Prog. Phys. 43:833 (1980).

    Google Scholar 

  13. D. S. Fisher and D. A. Huse,Phys. Rev. Lett. 56:1601 (1986); D. S. Fisher and D. A. Huse,Phys. Rev. B 38:386 (1988).

    Google Scholar 

  14. A. Georges, M. Mézard, and J. S. Yedidia,Phys. Rev. Lett. 64:2937 (1990).

    Google Scholar 

  15. D. A. Huse and D. S. Fisher,J. Phys. A 20, L997 (1987); D. S. Fisher and D. A. Huse,J. Phys. A 20:L1005 (1987).

    Google Scholar 

  16. A. van Enter,J. Stat. Phys. 60:275 (1990).

    Google Scholar 

  17. D. A. Huse and C. L. Henley,Phys. Rev. Lett. 54:2708 (1985).

    Google Scholar 

  18. R. Lenormand and S. Bories,C. R. Acad. Sci. Paris291:279 (1980).

    Google Scholar 

  19. W. L. McMillan,J. Phys. C 17:3179 (1984).

    Google Scholar 

  20. M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, and M. Virasoro,Phys. Rev. Lett. 52:1156 (1984).

    Google Scholar 

  21. C. M. Newman and D. L. Stein,Phys. Rev. B 46:973 (1992); see also C. M. Newman and D. L. Stein, InCellular Automata and Cooperative Systems, Dordrecht, (Kluwer, 1993), pp. 525–529.

    Google Scholar 

  22. C. M. Newman and D. L. Stein,Phys. Rev. Lett. 72:2286 (1994).

    Google Scholar 

  23. C. M. Newman and D. L. Stein,Ann. Inst. Henri Poincaré 31:249 (1995).

    Google Scholar 

  24. C. M. Newman and D. L. Stein,Phys. Rev. E 52:R1257 (1995).

    Google Scholar 

  25. B. Nickel and D. Wilkinson,Phys. Rev. Lett. 51:71 (1983).

    Google Scholar 

  26. G. Parisi,Phys. Rev. Lett. 43:1754 (1979).

    Google Scholar 

  27. G. Parisi,Phys. Rev. Lett. 50:1946 (1983); A. Houghton, S. Jain, and A. P. Young,J. Phys. C 16:L375 (1983).

    Google Scholar 

  28. J. D. Reger, R. N. Bhatt, and A. P. Young,Phys. Rev. Lett. 64:1859 (1990).

    Google Scholar 

  29. D. Sherrington and S. Kirkpatrick,Phys. Rev. Lett. 35:1972 (1975).

    Google Scholar 

  30. D. Stauffer and A. Aharony,Introduction to Percolation Theory, 2nd ed. (Taylor and Francis, London, 1992).

    Google Scholar 

  31. D. Wilkinson and J. F. Willemsen,J. Phys. A 16:3365 (1983).

    Google Scholar 

  32. J. E. Green, M. A. Moore, and A. J. Bray,J. Phys. C 16:L815 (1983); D. S. Fisher and H. Sompolinsky,Phys. Rev. Lett. 54:1063 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newman, C.M., Stein, D.L. Ground-state structure in a highly disordered spin-glass model. J Stat Phys 82, 1113–1132 (1996). https://doi.org/10.1007/BF02179805

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179805

Key Words

Navigation