Skip to main content
Log in

Entropy production estimates for Boltzmann equations with physically realistic collision kernels

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We establish strict entropy production bounds for the Boltzmann equation with the hard-sphere collision kernel. Using these entropy production bounds, we prove results asserting that the rate at which strongL 1 convergence to equilibrium occurs is uniform in wide classes of initial data. This extends our previous results in this direction, which applied only to a very special collision kernel. Moreover, the present results provide computable lower bounds; compactness arguments are entirely avoided. The uniformity is an important ingredient in our study of scaling limits of solutions of the non-spatially homogeneous Boltzmann equation, and is the main focus of this paper. However, the results obtained here provide the only framework known to us in which one can obtain computable estimates on the time it takes a solution of the spatially homogeneous Boltzmann equation with initial data far from equilibrium to reach any given small strongL 1 neighborhood of equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation,Arch. Rat. Mech. Anal. 77:11–21 (1981).

    Article  Google Scholar 

  2. L. Arkeryd, Asymptotic behavior of the Boltzmann equation with infinite range forces,Commun. Math. Phys. 86:475–484 (1982).

    Article  Google Scholar 

  3. L. Arkeryd,L estimates for the space-homogeneous Boltzmann equation,J. Stat. Phys. 31:347 (1983).

    Article  Google Scholar 

  4. L. Arkeryd, Stability inL 1 for the spatially homogeneous Boltzmann equation,Arch. Rat. Mech. Anal. 103:151–168 (1988).

    Google Scholar 

  5. A. R. Barron, Entropy and the central limit theorem,Ann. Prob. 14:336–342 (1986).

    Google Scholar 

  6. N. M. Blachman, The convolution inequality for entropy powers,IEEE Trans. Inform. Theory 2:267–271 (1965).

    Article  Google Scholar 

  7. A. N. Bobylëv, The theory of the non-linear spatially uniform Boltzmann equation for Maxwellian molecules,Math. Phys. Rev. 7:111–223.

  8. L. D. Brown, A proof of the central limit theorem motivated by the Cramer-Rao inequality, inStatistics and Probability: Essays in Honor of C. R. Rao., Kallianpur et al., eds. (North-Holland, Amsterdam, 1982), pp. 314–328.

    Google Scholar 

  9. T. Carleman, Sur la solution de l'équation intégrodifférential de Boltzmann,Acta Math. 60:91–146 (1933).

    Google Scholar 

  10. T. Carleman,Problèmes Mathématique dans la théorie cinétique des gaz (Almqvist Wiksells, Uppsala, 1957).

    Google Scholar 

  11. E. A. Carlen, Superadditivity of Fisher's information and logarithmic Sobolev inequalities,J. Funct. Anal. 101:194–211 (1991).

    Article  Google Scholar 

  12. E. A. Carlen and M. C. Carvalho, Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation,J. Stat. Phys. 67:575–608 (1992).

    Article  Google Scholar 

  13. E. A. Carlen and A. Soffer, Entropy production by block variable summation central limit theorems,Commun. Math. Phys. 140:339–371 (1991).

    Google Scholar 

  14. C. Cercignani,H-theorem and trend to equilibrium in the kinetic theory of gases,Arch. Mech. 34:231–241 (1982).

    Google Scholar 

  15. C. Cercignani,The Boltzmann Equation and Its Applications (Springer-Verlag, New York, 1988).

    Google Scholar 

  16. I. Csiszar, Informationstheoretische Konvergenenzbegriffe im Raum der Wahrscheinlich-keitsverteilungen,Pub. Math. Inst. Hung. Acad. Sci. VII (Series A):137–157 (1962).

    Google Scholar 

  17. L. Desvillettes, Entropy dissipation rate and convergence in kinetic equations,Commun. Math. Phys. 123:687–702 (1989).

    Article  Google Scholar 

  18. M. Dresden,Kinetic Theory Applied to Hydrodynamics (Colloquium Lectures in Pure and Applied Science Series 2, Socony Mobil Oil Co. Field Research Laboratory, Dallas, Texas, 1956).

    Google Scholar 

  19. T. Elmroth, Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range,Arch. Rat. Mech. Anal. 82:1–12 (1983).

    Google Scholar 

  20. T. Elmroth, On theH-function and convergence towards equilibrium for a spacehomogeneous molecular density,SIAM J. Appl. Math. 44:150–159 (1984).

    Article  Google Scholar 

  21. H. Grad, Asymptotic theory of the Boltzmann equation,Phys. Fluids 6:147–181 (1963).

    Article  Google Scholar 

  22. L. Gross, Logarithmic Sobolev inequalities,Am. J. Math. 97:1061–1083 (1975).

    Google Scholar 

  23. T. Gustafsson, GlobalL p properties for the spatially homogeneous Boltzmann equation,Arch. Rat. Mech. Anal. 103:1–38 (1988).

    Article  Google Scholar 

  24. J. Lebowitz and E. Montroll,Nonequilibrium Phenomena I: The Boltzmann Equation (North-Holland, Amsterdam, 1984).

    Google Scholar 

  25. Ju. V. Linnik, An information theoretic proof of the central limit theorem with Lindeberg conditions,Theory Prob. Appl. 4:288–299 (1959).

    Article  Google Scholar 

  26. N. Maslova and Yu. Romanovskii, Mathematical methods of studying the Boltzmann equation,St. Petersburg Math. J. 1:1–41 (1992).

    Google Scholar 

  27. J. C. Maxwell,The Scientific Papers by J. C. Maxwell (Dover, New York, 1965).

    Google Scholar 

  28. H. P. McKean, Speed of approach to equilibrium for Kac's caricature a Maxwellian gas,Arch. Rat. Mech. Anal. 21:343–367 (1966).

    Article  Google Scholar 

  29. D. Morgenstein, General existence and uniqueness proof for spatially homogeneous solutions of the Maxwell-Boltzmann equation in the case of Maxwellian molecules,Proc. Natl. Acad. Sci. USA 40:719–721 (1954).

    Google Scholar 

  30. D. Morgenstern, Analytical studies related to the Maxwell-Boltzmann equation,J. Rat. Mech. Anal. 4:154–183 (1955).

    Google Scholar 

  31. C. E. Shannon and W. Weaver,The Mathematical Theory of Communication (University of Illinois Press, Urbana, Illinois, 1949).

    Google Scholar 

  32. A. Stam, Some inequalities satisfied by the quantities of information of Fisher and Shannon,Inform. Control 2:101–112 (1959).

    Article  Google Scholar 

  33. G. Toscani, Newa priori estimates for the spatially homogeneous Boltzmann equation,Cont. Mech. Thermodyn., in press.

  34. G. Toscani, Strong convergence towards equilibrium for a gas of Maxwellian pseudomolecules,Cont. Mech. Thermodyn., in press.

  35. G. Toscani, Lyapunov Functionals for a Maxwell Gas, Ferrara preprint (1992).

  36. C. Truesdell, On the pressures and flux of energy in a gas according to Maxwell's kinetic theory, Part II,J. Rat. Mech. Anal. 5:55–128 (1956).

    Google Scholar 

  37. G. Uhlenbeck, The statistical mechanics of non-equilibrium phenomena, 1954 Higgins Lectures, Mimeographed notes in Fine Hall Library, Princeton University.

  38. B. Wennberg, Stability and exponential convergence inL p for the space homogeneous Boltzmann equation,Nonlinear Analysis T.M.A., to appear.

  39. E. Wild, On Boltzmann's equation in the kinetic theory of gases,Proc. Camb. Phil. Soc. 47:602–609 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlen, E.A., Carvalho, M.C. Entropy production estimates for Boltzmann equations with physically realistic collision kernels. J Stat Phys 74, 743–782 (1994). https://doi.org/10.1007/BF02188578

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02188578

Key Words

Navigation