Skip to main content
Log in

Generalized Hartree-Fock theory and the Hubbard model

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The familiar unrestricted Hartree-Fock variational principles is generalized to include quasi-free states. As we show, these are in one-to-one correspondence with the one-particle density matrices and these, in turn, provide a convenient formulation of a generalized Hartree-Fock variational principle, which includes the BCS theory as a special case. While this generalization is not new, it is not well known and we begin by elucidating it. The Hubbard model, with its particle-hole symmetry, is well suited to exploring this theory because BCS states for the attractive model turn into usual HF states for the repulsive model. We rigorously determine the true, unrestricted minimizers for zero and for nonzero temperature in several cases, notably the half-filled band. For the cases treated here, we can exactly determine all broken and unbroken spatial and gauge symmetries of the Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Araki, On quasifree states of CAR and Bogoliubov automorphisms,Publ. RIMS Kyoto 6: 385–442 (1970/71).

    Google Scholar 

  2. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity,Phys. Rev. 108:1175 (1957).

    Article  Google Scholar 

  3. V. Bach, E. H. Lieb, M. Loss, and J. P. Solovej, There are no unfilled shells in unrestricted Hartree-Fock theory,Phys. Rev. Lett. 72:2981–2983 (1994).

    Article  Google Scholar 

  4. N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov,A New Method in the Theory of Superconductivity (Consultants Bureau, New York, 1959), Appendix 2.

    Google Scholar 

  5. J.-P. Blaizot and G. Ripka,Quantum Theory of Finite Systems (MIT Press, Cambridge, Massachusetts, 1986).

    Google Scholar 

  6. V. Bach, Error bound for the Hartree-Fock energy of atoms and molecules,Commun. Math. Phys. 147:527–548 (1992).

    Article  Google Scholar 

  7. M. Cryot, Theory of Mott transition: Application to transient metal oxides,J. Phys. (Paris)33:125–134 (1972).

    Google Scholar 

  8. P. G. de Gennes,Superconductivity of Metals and Alloys (Benjamin, New York, 1966).

    Google Scholar 

  9. E. Dagatto, Y. Fand, A. E. Ruckenstein, and S. Schmitt-Rink, Holes in the infiniteU Hubbard model. Instability of the Nagaoka state,Phys. Rev. B 40:7406–7409 (1989).

    Article  Google Scholar 

  10. K. Dichtel, R. H. Jellito, and H. Koppe, The ground state of the neutral Hubbard model,Z. Physik 246:248–260 (1971); Thermodynamics of the Hubbard model,Z. Physik 251:173–184 (1972).

    Article  Google Scholar 

  11. B. Doucot and X. G. Wen, Instability of the Nagaoka state with more than one hole,Phys. Rev. B 40:2719–2722 (1989).

    Article  Google Scholar 

  12. E. Fradkin,Field Theories of Condensed Matter Systems (Addison-Wesley, Reading, Massachusetts, 1991).

    Google Scholar 

  13. M. Gaudin, Une démonstration simplifiée du théorème de Wick en méchanique statistique,Nucl. Phys. 15:89–91 (1960).

    Article  Google Scholar 

  14. M. C. Gutzwiller, The effect of correlation on the ferromagnetism of transition metals,Phys. Rev. Lett. 10:159–162 (1963).

    Article  Google Scholar 

  15. J. Hubbard, Electron correlations in narrow energy bands,Proc. R. Soc. Lond. A 276:238–257 (1963).

    Google Scholar 

  16. J. Kanamori, Electron correlation and ferromagnetism of transition metals,Prog. Theor. Phys. 30:275–289 (1963).

    Google Scholar 

  17. T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long range order,Physica 138A:320–358 (1986).

    Google Scholar 

  18. E. H. Lieb, Variational principle for many-fermion systems,Phys. Rev. Lett. 46:457–459 (1981); Errata47:69 (1981).

    Google Scholar 

  19. E. H. Lieb, Two theorems on the Hubbard model,Phys. Rev. Lett. 62:1201–1204 (1989).

    Article  Google Scholar 

  20. E. H. Lieb, The Hubbard model: Some rigorous results and open problems, inAdvances in Dynamical Systems and Quantum Physics, V. Figariet al., eds. (World Scientific, Singapore, in press).

  21. E. H. Lieb, Thomas-Fermi and Hartree-Fock theory, inProceedings International Congress Mathematicians (Canadian Mathematical Society, 1975), pp. 383–386.

  22. E. H. Lieb and M. Loss, Fluxes, Laplacians and Kasteleyn's theorem,Duke Math. J. 71:337–363 (1993).

    Article  Google Scholar 

  23. E. H. Lieb, M. Loss, and R. J. McCann, Uniform density theorem for the Hubbard model,J. Math. Phys. 34:891–898 (1993).

    Article  Google Scholar 

  24. E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems,Commun. Math. Phys. 53:185–194 (1977).

    Article  Google Scholar 

  25. Y. Nagaoka, Ferromagnetism in a narrow, almost half-filled S-band,Phys. Rev. 147:392–405 (1966).

    Article  Google Scholar 

  26. D.R. Penn, Stability theory of the magnetic phases for a simple model of the transition metals,Phys. Rev. 142:350–365 (1966).

    Article  Google Scholar 

  27. A. Sütõ, Absence of highest spin ground states in the Hubbard model,Commun. Math. Phys. 140:43–62 (1991).

    Article  Google Scholar 

  28. B. S. Shastry, H. R. Krishnamurthy, and P. W. Anderson, Instability of the Nagaoka ferromagnetic state of theU=∞ Hubbard model,Phys. Rev. B. 41:2375–2379 (1990).

    Article  Google Scholar 

  29. B. Tóth, Failure of saturated ferromagnetism for the Hubbard model with two holes,Lett. Math. Phys. 22:321–333 (1991).

    Article  Google Scholar 

  30. D. J. Thouless, Exchange in solid3He and the Heisenberg Hamiltonian,Proc. Phys. Soc. (London)86:893–904 (1965).

    Article  Google Scholar 

  31. H. Tasaki, Extension of Nagaoka's theorem on the largeU Hubbard model,Phys. Rev. B 40:9192–9193 (1989).

    Article  Google Scholar 

  32. W. Thirring,A Course in Mathematical Physics, Vol. 4 (Springer, Vienna, 1980), p. 48.

    Google Scholar 

  33. J. G. Valatin, Comments on the theory of superconductivity,Nuovo Cimento [X] 7:843–857 (1958).

    Google Scholar 

  34. C. N. Yang and S. C. Zhang,SO 4 symmetry in a Hubbard model,Mod. Phys. Lett. B 4:759–766 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Philippe Choquard on his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bach, V., Lieb, E.H. & Solovej, J.P. Generalized Hartree-Fock theory and the Hubbard model. J Stat Phys 76, 3–89 (1994). https://doi.org/10.1007/BF02188656

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02188656

Key Words

Navigation