Skip to main content
Log in

Topological classification of linear hyperbolic cocycles

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper linear hyperbolic cocycles are classified by the relation of topological conjugacy. Roughly speaking, two linear cocycles are conjugate if there exists a homeomorphism which maps their trajectories into each other. The problem of classification of discrete-time deterministic hyperbolic dynamical systems was investigated by Robbin (1972). He proved that there exist 4d classes ofd-dimensional deterministic discrete hyperbolic dynamical systems. We obtain a criterion for topological conjugacy of two linear hyperbolic cocycles and show that the number of classes depends crucially on the ergodic properties of the metric dynamical system over which they are defined. Our result is a generalization of the deterministic theorem of Robbin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akcoglu, M. A., and Chacon, R. V. (1965). Generalized eigenvalues of automorphisms.Proc. Am. Math. Soc. 16, 676–680.

    Google Scholar 

  • Arnold, L. (1994).Random Dynamical Systems. Preliminary version 2, Bremen.

  • Arnold, L., and Crauel, H. (1991). Random dynamical systems. In Arnold, L., Crauel, H., and Eckmann, J.-P. (Eds) (1991).Lyapunov exponents, Oberwolfach 1990, Lecture Notes in Mathematics, Volume 1486, pp. 1–22, Springer-Verlag, Berlin.

    Google Scholar 

  • Cornfeld, I. P., Fomin, S. V., and Sinai, Ya. G. (1982).Ergodic Theory, Springer-Verlag, New York.

    Google Scholar 

  • Deimling, K. (1985).Nonlinear Functional Analysis, Springer-Berlag, Berlin.

    Google Scholar 

  • Dold, A. (1972).Lectures on Algebraic Topology, Springer-Verlag, Berlin.

    Google Scholar 

  • Gantmacher, F. R. (1977).The Theory of Matrices, Vol. 1, Chelsea, New York.

    Google Scholar 

  • Gol'dsheid, I. Ya., and Margulis, G. A. (1989). Lyapunov indices of products of random matrices.Russ. Math. Surv. 44 (5), 11–71.

    Google Scholar 

  • Halmos, P. R. (1956).Lectures on Ergodic Theory, Chelsea, New York.

    Google Scholar 

  • Irwin, M. C. (1980).Smooth Dynamical Systems, Academic Press, London.

    Google Scholar 

  • Kato, T. (1976).Perturbation Theory for Linear Operators, Springer-Verlag, Berlin.

    Google Scholar 

  • Kirillov, A. A. (1967). Dynamical systems, factors and representations of groups,Russ. Math. Surv. 22, 63–75.

    Google Scholar 

  • Knill, O. (1991). The upper Lyapunov exponent ofSl(2,R) cocycles: Discontinuity and the problem of positivity. In Arnold, L., Crauel, H., and Eckmann, J.-P. (Eds.),Lyapunov Exponents, Oberwolfach 1990, Lecture Notes in Mathematics, Vol. 1486, Springer-Verlag, Berlin, pp. 86–97.

    Google Scholar 

  • Knill, O. (1992). Positive Lyapunov exponents for a dense set of bounded measurableSl(2,R) cocycles.Ergodic Theory Dynam. Syst. 12 (2), 319–331.

    Google Scholar 

  • Moore, C. C., and Schmidt, K. (1986). Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson,Proc. London Math. Soc. 40, 443–475.

    Google Scholar 

  • Oseledets, V. I. (1968). A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems.Trans. Moscow Math. Soc. 19, 197–231.

    Google Scholar 

  • Pears, A. R. (1975).Dimension Theory of General Spaces, Cambridge University Press, Cambridge.

    Google Scholar 

  • Robbin, J. W. (1972). Topological conjugacy and structural stability for discrete dynamical systems.Bull. Am. Math. Soc. 78 (6), 923–952.

    Google Scholar 

  • Schmidt, K. (1990).Algebraic Ideas in Ergodic Theory. Regional Conference Series in Mathematics, Number 76, Am. Math. Soc., Providence, RI.

    Google Scholar 

  • Virtser, A. D. (1979). On products of random matrices and operators.Theory Prob. App. 24, 367–377.

    Google Scholar 

  • Wanner, T. (1992). A Hartman-Grobman Theorem for Discrete Random Dynamical Systems, Institut für Mathematik, Universität Augsburg, Report Nr. 269.

  • Wanner, T. (1994). Linearization of random dynamical systems. In John, C., Kirchgraber, U., and Walther, H. O. (Eds.),Dynamics Reported, Vol. 4, Springer, Berlin/Heidelberg/New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cong, N.D. Topological classification of linear hyperbolic cocycles. J Dyn Diff Equat 8, 427–467 (1996). https://doi.org/10.1007/BF02218762

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02218762

Key words

AMS Subject Classification

Navigation