Skip to main content
Log in

Kernel smoothing approaches to nonparametric item characteristic curve estimation

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The option characteristic curve, the relation between ability and probability of choosing a particular option for a test item, can be estimated by nonparametric smoothing techniques. What is smoothed is the relation between some function of estimated examinee ability rankings and the binary variable indicating whether or not the option was chosen. This paper explores the use of kernel smoothing, which is particularly well suited to this application. Examples show that, with some help from the fast Fourier transform, estimates can be computed about 500 times as rapidly as when using commonly used parametric approaches such as maximum marginal likelihood estimation using the three-parameter logistic distribution. Simulations suggest that there is no loss of efficiency even when the population curves are three-parameter logistic. The approach lends itself to several interesting extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azzalini, A., Bowman, A. W., & Härdle, W. (1989) On the use of nonparametric regression for model checking.Biometrika, 76, 1–11.

    Google Scholar 

  • Barry, D. (1986). Nonparametric Bayesian regression.Annals of Statistics, 14, 934–953.

    Google Scholar 

  • Becker, R. A., Chambers, J. M. & Wilks, A. R. (1988).The new S language. Pacific Grove, CA.: Wadsworth & Brooks/Cole.

    Google Scholar 

  • Bock, R. D., & Aitkin M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm.Psychometrika, 46, 443–459.

    Google Scholar 

  • Bock, R. D., & Lieberman, M. (1970). Fitting a response model forn dichotomously scored items.Psychometrika, 35, 179–197.

    Google Scholar 

  • Buja, A., Hastie, T., & Tibshirani, R. (1989). Linear smoothers and additive models (with discussion).Annals of Statistics, 17, 453–555.

    Google Scholar 

  • Copas, J. B. (1983). Plottingp againstx.Applied Statistics, 32, 25–31.

    Google Scholar 

  • Craven, P., & Wahba, G. (1979). Smoothing noisy data with spline functions.Numerische Mathematik, 31, 377–403.

    Google Scholar 

  • Cressie, N., & Holland, P. W. (1983). Characterizing the manifest probabilities of latent trait models.Psychometrika, 48, 129–142.

    Google Scholar 

  • Drasgow, F., Levine, M. V., Williams, B., McLaughlin, M. E., & Candell, G. L. (1989). Modeling incorrect responses to multiple-choice items with multilinear formula score theory.Applied Psychological Measurement, 13, 285–299.

    Google Scholar 

  • Eubank, R. L. (1988).Spline smoothing and nonparametric regression. New York: Marcel Dekker.

    Google Scholar 

  • Gasser, T., Müller, H. G., & Mammitzsch, V. (1985). Kernels for nonparametric curve estimation.Journal of the Royal Statistical Society, Series B, 47, 238–252.

    Google Scholar 

  • Härdle, W. (1987). Resistant smoothing using the fast Fourier transform.Applied Statistics, 36, 104–111.

    Google Scholar 

  • Härdle, W. (1991).Smoothing techniques with implementation in S. New York: Springer-Verlag.

    Google Scholar 

  • Hastie, T., & Tibshirani, R. (1986). Generalized additive models.Statistical Science, 1, 297–318.

    Google Scholar 

  • Hastie, T., & Tibshirani, R. (1987). Generalized additive models: Some applications.Journal of the American Statistical Association, 82, 371–386.

    Google Scholar 

  • Levine, M. V. (1984).An introduction to multilinear formula score theory (Measurement Series 84-5). Champaign, IL: University of Illinois, Department of Educational Psychology, Model-Based Measurement Laboratory.

    Google Scholar 

  • Levine, M. V. (1985). The trait in latent trait theory. In D. J. Weiss (Ed.),Proceedings of the 1982 item response theory/computerized adaptive testing conference. Minneapolis, MN: University of Minnesota, Department of Psychology, Computerized Adaptive Testing Laboratory.

    Google Scholar 

  • Lewis, C. (1986). Test theory andPsychometrika: The past twenty-five years.Psychometrika, 51, 11–22.

    Google Scholar 

  • Lord, F. M. (1980).Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Lord, F. M., & Pashley, P. J. (1988).Confidence bands for the three-parameter logistic item response curve (Research Report No. 88-67). Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • Mislevy, R. J., & Bock, R. D. (1982).BILOG: Item analysis and test scoring with binary logistic models [Computer program]. Mooresville, IN: Scientific Software.

    Google Scholar 

  • Mokken, R. J. (1971).A theory and procedure of scale analysis. The Hague: Mouton.

    Google Scholar 

  • O'Sullivan, F., Yandell, B. S., & Raynor, W. J. Jr. (1986). Automatic smoothing of regression functions in generalized linear models.Journal of the American Statistical Association, 81, 96–103.

    Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1986).Numerical recipes: The art of scientific computing. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ramsay, J. O. (1988). Monotone regression splines in action (with discussion).Statistical Science, 3, 425–461.

    Google Scholar 

  • Ramsay, J. O. (1989). A comparison of three simple test theory models.Psychometrika, 54, 487–499.

    Google Scholar 

  • Ramsay, J. O., & Abrahamowicz, M. (1989). Binomial regression with monotone splines: A psychometric application.Journal of the American Statistical Association, 84, 906–915.

    Google Scholar 

  • Ramsay, J. O., & Winsberg, S. (1991). Maximum marginal likelihood estimation for semiparametric item analysis.Psychometrika, 56, 365–379.

    Google Scholar 

  • Samejima, F. (1979).A new family of models for the multiple choice item (Research Report No. 79-4). Knoxville, TN: University of Tennessee, Department of Psychology.

    Google Scholar 

  • Samejima, F. (1981).Efficient methods of estimating the operating characteristics of item response categories and challenge to a new model for the multiple-choice item. Unpublished manuscript, University of Tennessee, Department of Psychology.

  • Samejima, F. (1984).Plausibility functions of Iowa Vocabulary Test items estimated by the simple sum procedure of the conditional P.D.F. approach (Research Report No 84-1). Knoxville, TN: University of Tennessee, Department of Psychology.

    Google Scholar 

  • Samejima, F. (1988).Advancement of latent trait theory, Unpublished manuscript, University of Tennessee, Department of Psychology.

  • Silverman, B. (1986).Density estimation for statistics and data analysis. London: Chapman and Hall.

    Google Scholar 

  • Thissen, D., & Wainer, H. (1982). Some standard errors in item response theory.Psychometrika, 47, 397–412.

    Google Scholar 

  • Wahba, G. (1990).Spline models for observational data. Philadelphia: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Wand, M. P., & Schucany, W. R. (1990). Gaussian-based kernels.Canadian Journal of Statistics, 18, 197–204.

    Google Scholar 

  • Wingersky, M. S., Patrick, R., & Lord, F. M. (1988). LOGIST users guide. Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • Winsberg, S., & Ramsay, J. O. (1980). Monotonic transformations to addivity using splines.Biometrika, 67, 669–674.

    Google Scholar 

  • Winsberg, S., & Ramsay, J. O. (1983). Monotonic spline transformations for dimension reduction.Psychometrika, 48, 403–423.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author wishes to acknowledge the support of the National Sciences and Engineering Research Council of Canada through grant A320 and the support of Educational Testing Service during his leave there.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramsay, J.O. Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika 56, 611–630 (1991). https://doi.org/10.1007/BF02294494

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294494

Key words

Navigation