Skip to main content
Log in

A comparison of the classification capabilities of the 1-dimensional kohonen neural network with two pratitioning and three hierarchical cluster analysis algorithms

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Neural Network models are commonly used for cluster analysis in engineering, computational neuroscience, and the biological sciences, although they are rarely used in the social sciences. In this study we compare the classification capabilities of the 1-dimensional Kohonen neural network with two partitioning (Hartigan and Späthk-means) and three hierarchical (Ward's, complete linkage, and average linkage) cluster methods in 2,580 data sets with known cluster structure. Overall, the performance of the Kohonen networks was similar to, or better than, the performance of the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Psychological Association. (1992).PsycINFO users manual. Washington, DC: Author.

    Google Scholar 

  • Anderson, J. A. (1995).An introduction to neural networks. Cambridge, MA: the MIT Press.

    Google Scholar 

  • Angéniol, B., de la Croix Vaubois, G., & Texier, J. Y. (1988). Self-organizing feature maps and the traveling salesman problem.Neural Networks, 1, 289–293.

    Google Scholar 

  • Atiya, Amir F. (1990). An unsupervised learning technique for artificial neural networks.Neural Networks, 3, 707–7111.

    Article  Google Scholar 

  • Balakrishan, P. V., Cooper, M. C., Jacob, V. S., & Lewis, P. A. (1994). A study of the classification capabilities of neural networks using unsupervised learning: A comparison withK-Means clustering.Psychometrika, 59, 509–525.

    Google Scholar 

  • Bayne, C. K., Beauchamp, J. J., Begovich, C. L., & Kane, V. E. (1980). Monte Carlo comparisons of selected clustering procedures.Pattern Recognition, 12, 51–62.

    Article  Google Scholar 

  • Blashfield, R. K. (1976). Mixture model tests of cluster analysis: Accuracy of four agglomerative hierarchical methods.Psychological Bulletin, 83, 377–388.

    Google Scholar 

  • Blashfield, R. K., & Aldenderfer, M. S. (1988). The methods and problems of cluster analysis. In J. Nesselroade & R. B. Cattell (Eds.),Handbook of multivariate experimental psychology (2nd ed., pp. 447–474). New York: Plenum Press.

    Google Scholar 

  • Chen, S. K., Mangiameli, P., & West, D. (1995). The comparative ability of self-organizing neural networks to define cluster structure.Omega International Journal of Management Science, 23, 271–279.

    Article  Google Scholar 

  • Cheng, R., & Milligan, G. W. (1995). Mapping influence regions in hierarchical clustering.Multivariate Behavioral Research, 30, 547–576.

    Article  Google Scholar 

  • Childress, M. (1981).Statistics for evaluating classifications: A new view. Paper presented at the meeting of the Classification Society Annual Meeting.

  • Churchland, P. S., & Sejnowski, T. J. (1992).The computational brain. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales.Educational and Psychological Measurement, 20, 37–46.

    Google Scholar 

  • Cormack, R. M. (1971). A review of classification.Journal of the Royal Statistical Society, Series A, 134, 321–367.

    Google Scholar 

  • Darken, C., & Moody, J. (1990). Fast adaptive k-means clustering: Some empirical results.Proceedings of the International Joint Conference on Neural Networks, II, 233–238.

    Google Scholar 

  • Donoghue, J. R. (1995). The effects of within-group covariance structure on recovery in cluster analysis: I. The bivariate case.Multivariate Behavioral Research, 30, 227–254.

    Google Scholar 

  • Downton, M., & Brennan, T. (1980).Comparing classifications: An evaluation of several coefficients of partition agreement. Paper presented at the Classification Society Annual Meeting.

  • Everitt, B. (1993).Cluster analysis (3rd ed.). New York: Halsted Press.

    Google Scholar 

  • Fowlkes, E. B., & Mallows, C. L. (1980).A new measure of similarity between two hierarchical clusterings and its use in studying hierarchical clustering methods. Paper presented at the meeting of the Classification Society Annual Meeting.

  • Hartigan, J. A. (1975).Clustering algorithms. New York: Wiley.

    Google Scholar 

  • Hartigan, J. A., & Wong, M. A. (1979). A k-means clustering algorithm.Applied Statistics, 28, 100–108.

    Google Scholar 

  • Haykin, S. S. (1994).Neural networks: A comprehensive foundation. New York: Macmillan.

    Google Scholar 

  • Hays, D. L. (1973).Statistics for the social sciences (2nd ed.). New York: Holt, Rhinehart & Winston.

    Google Scholar 

  • Hebb, D. O. (1949).The organization of behavior. New York: Wiley.

    Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.Journal of Physiology (London), 160, 106–154.

    Google Scholar 

  • Hubel, D. H, & Wiesel, T. N. (1977). Functional architecture of macaque visual cortex.Proceedings of the Royal Society of London, Series B, 198, 1–59.

    Google Scholar 

  • Hubert, L., & Arabie, P. (1985). Comparing partitions.Journal of Classification, 2, 193–218.

    Article  Google Scholar 

  • INSPEC, Institution of Electrical Engineers. (1991).INSPEC user manual. Stevenage, Herts., U. K.: Autor.

    Google Scholar 

  • Kinderman, A. J., & Monahan, J. F. (1977). Computer generation of random variables using the ratio of uniform deviates.ACM Transactions on Mathematical Software, 3, 257–260.

    Article  Google Scholar 

  • Kohonen, T. (1995).Self-organizing maps. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Kohonen, T., Kangas, J., & Laaksonen, J. (1995).SOM_PAK: The Self-Organizing MAP Program Package, Version 3.1 [Computer program]. Helsinki University of Technology, Laboratory of Computer and Information Science, Rakentajanaukio 2 C, SF-02150 Espoo, Finland. (Available by anonymous ftp from cochlea.hut.fi: 130.233.168.48)

    Google Scholar 

  • Kuiper, F. K., & Fisher, L. (1975). A Monte Carlo comparison of six clustering procedures.Biometrics, 31, 777–783.

    Google Scholar 

  • McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of ideas immanent in nervous activity.Bulletin of Mathematical Biophysics, 5, 115–133.

    Google Scholar 

  • Milligan, G. W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms.Psychometrika, 45, 325–342.

    Article  Google Scholar 

  • Milligan, G. W. (1981). A review of Monte Carlo tests of cluster analysis.Multivariate Behavioral Research, 16, 379–407.

    Article  Google Scholar 

  • Milligan, G. W. (1983). Characteristics of four external criterion measures. In J. Felsenstein (Ed.),Numerical taxonomy. Berlin: Germany: Springer-Verlag.

    Google Scholar 

  • Milligan, G. W. (1985). An algorithm for generating artificial test clusters.Psychometrika, 50, 123–127.

    Google Scholar 

  • Milligan, G. W., & Cooper, M. C. (1987). Methodology review: Clustering methods.Applied Psychological Measurement, 11(4), 329–354.

    Google Scholar 

  • Milligan, G. W., & Schilling, D. A. (1985). Asymptotic and finite-sample characteristics of four external criterion measures.Multivariate Behavioral Research, 20, 97–109.

    Article  Google Scholar 

  • Morey, L. (1981).The measurement of classification agreement: An adjustment to the Rand Index for chance agreement. Paper presented at the meeting of the Classification Society Annual Meeting.

  • Murtagh, F., & Hernández-Pajares, M. (1995). The Kohonen self-organizing map method: An assessment.Journal of Classification, 12, 165–190.

    Google Scholar 

  • NeuralWare. (1991).Neuralworks Professional II/Plus [software manual]. Pittsburgh, PA: Author.

    Google Scholar 

  • Pal, N. R., Bezdek, J. C., & Tsao, E. C-K. (1993). Generalized clustering networks and Kohonen's self-organizing scheme.IEEE Transactions on Neural Networks, 4, 549–557.

    Article  Google Scholar 

  • Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods.Journal of the American Statistical Association, 66, 846–850.

    Google Scholar 

  • Ripley, B. D. (1993). Statistical aspects of neural networks. In O. E. Bandorff-Nielsen, J. L. Jensen, & W. S. Kendall (Eds.),Network and chaos—Statistical and probabilistic aspects (pp. 40–123). London: Chapman and Hall.

    Google Scholar 

  • Rumelhart, D. E., McClelland, J. L., & the PDP Research Group (1987).Parallel distributed processing: Explorations in the microstructure of cognition, Volume 1: Foundations. Cambridge, MA: MIT Press.

    Google Scholar 

  • Scheibler, D., & Schneider, W. (1985). Monte Carlo tests of the accuracy of cluster analysis algorithms: A comparison of hierarchical and nonhierarchical methods.Multivariate Behavioral Research, 20, 283–304.

    Article  Google Scholar 

  • Smith, M. (1993).Neural networks for statistical modeling. New York, NY: Van Nostrand Reinhold.

    Google Scholar 

  • Sokal, R., & Michener, C. D. (1958). A statistical method for evaluating systematic relationships.University of Kansas Scientific Bulletin, 38, 1409–1438.

    Google Scholar 

  • Späth, H. (1985).Cluster dissection and analysis: Theory, Fortran examples. New York: Ellis Horwood.

    Google Scholar 

  • StatSci. (1993).S-Plus for Windows users manual. Seattle, WA: Statistical Sciences, Inc.

    Google Scholar 

  • Vinod, V. V., Chaudhury, S., Mukherjee, J., & Ghose, S. (1994). A connectionist approach for clustering with applications in image analysis.IEEE Transactions on Systems, Man, & Cybernetics, 3, 365–384.

    Google Scholar 

  • Waller, N. G., Underhill, J. M., & Kaiser, H. A. (1996).A method for generating simulated plasmodes and artifical test clusters with user-defined shape, size, and orientation. Manuscript submitted for publication.

  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function.Journal of the American Statistical Association, 58, 236–244.

    Google Scholar 

  • Wothke, W. (1993). Nonpositive definite matrices in structural modeling. In K. A. Bollen & J. S. Long (Eds.),Testing structural equation models (pp. 256–293). Newbury Park: SAGE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels G. Waller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waller, N.G., Kaiser, H.A., Illian, J.B. et al. A comparison of the classification capabilities of the 1-dimensional kohonen neural network with two pratitioning and three hierarchical cluster analysis algorithms. Psychometrika 63, 5–22 (1998). https://doi.org/10.1007/BF02295433

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02295433

Key words

Navigation