Skip to main content
Log in

Photo-orthotropic-elasticity

A new and improved method of fabricating transparent birefringent model material is presented. Also, stress-strain models are employed to predict the three fundamental photoelastic constants for unidirectional composites and are experimentally verified

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A method of producing transparent model materials for photo-orthotropic-elastic studies is presented. This material fabricated from glass fibers and a modified polyester matrix exhibits continuous relatively smooth fringe patterns which are linearly related to the state of stress. As such, the heterogenous material can be treated as a homogenous medium with orthotropic properties.

Three photoelastic constantsf L ,f T andf LT are necessary to describe the photoelastic response of the orthotropic materials to a general state of stress. Methods are established for predicting these photoelastic constants from the properties of the constituents. These methods are based on stress proportioning between the fibers and the matrix and upon the linear summation of the retardation from each constituent. The relations derived forf L ,f T andf LT were verified experimentally and found to be in close agreement with measured values.

A stress-optic law is derived on the basis of stress partitioning between the two constituents in a unidirectionally fiber-reinforced laminate. The adequacy of this stress-optic relation is confirmed by experimental verification. Comparison of this stress-optic relation with the expression advanced by Pih and Knight shows the validity of their initial concepts but the inadequacy of their partitioning functions. Detailed comparison of the stress-optic law with the analog relation proposed by Sampson shows excellent agreement. Indeed, the use of Sampson's stress-optic law is recommended and the law based on stress partitioning is to be considered as a fundamental theoretical proof of the Sampson relation. Finally, the applicability of Sampson's stress-optic law to bidirectionally reinforced materials was confirmed with a thorough experimental verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dally, J.W. andAlfirevic, I., “Application of Birefringent Coating to Glass-fiber-reinforced Plastic,”Experimental Mechanics,9 (3),97–102 (March1969).

    Article  Google Scholar 

  2. Pih, H. andKnight, C.E., “Photoelastic Analysis of Anisotropic Fiber Reinforced Composites,”Jnl. Composite Materials,3,94 (1969).

    Google Scholar 

  3. Sampson, R. C., “A Stress-Optic Law for Photoelastic Analysis of Orthotropic Composites,”Experimental Mechanics,10 (5),210–215 (May1970).

    Article  Google Scholar 

  4. Plastics Department of Rohm & Haas Company, “Paraplex P-Series Polyester Resins,” Technical Data Bulletin No. 392a.

  5. Dally, J.W. andRiley, W.F., Experimental Stress Analysis, Mc-Graw Hill, New York, 165–183 (1965).

    Google Scholar 

  6. Broutman, L.J. andKrock, R.H., Modern Composite Materials, Addison-Wesley Publishing Co., Reading, Mass., 281 (1967).

    Google Scholar 

  7. Grezczuk, L. B., “Theoretical and Experimental Studies on Properties and Behavior of Filamentary Composites,” Proc. 21st Ann. Tech. Conf., SPI Reinforced Plastics Div., Soc. of the Plastics Ind., Inc., Section 8-A (Feb. 1966).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research represents partial fulfillment of the requirements for a PhD degree at Illinois Institute of Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dally, J.W., Prabhakaran, R. Photo-orthotropic-elasticity. Experimental Mechanics 11, 346–356 (1971). https://doi.org/10.1007/BF02320536

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02320536

Keywords

Navigation