Skip to main content
Log in

Broken beams

Tearing and shear failures in explosively loaded clamped beams

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A series of experiments has been conducted, utilizing sheet explosive opplied to clamped aluminum beams, with a neoprene buffer. As the load is monotonically increased, three damage modes are identified, which respecitively are major inelastic deformation, tearing at the extreme fiber, and transverse shear at the support.

Satisfactory correlation is reported for the extent of inelastic deformation using a lumped parameter, finite-difference code; thresholds for tearing and shear failure based on empirical criteria are presented. Using a Timoshenko beam theory, the shear threshold appears to be dependent on the section velocity, rather than upon the shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c 2 :

propagation speed for shear waves (in./s)

G :

shear modulus (ksi)

h :

beam thickness (in.)

H.E.:

high explosive (as abbreviation)

I :

impulse intensity (ktaps)*

I :

reference impulse, arbitrary strain, eq (1) (ktaps)

I 05 :

reference impulse, 5 percent strain, eq (1) (ktaps)

i :

subscript indicating material layer

K ε :

defined by eq (3) (in./s)

L :

beam length (in.)

r :

radius of\(\sqrt {h^2 /12} (in.)\)

\(\bar t\) :

time (s)

t :

\({{\bar t} \mathord{\left/ {\vphantom {{\bar t} t}} \right. \kern-\nulldelimiterspace} t}_R \) (dimensionless)

t R :

L/c 2 (s)

\(\bar x\) :

distance along beam (in.)

x :

\({{\bar x} \mathord{\left/ {\vphantom {{\bar x} L}} \right. \kern-\nulldelimiterspace} L}\) (dimensionless)

\(\bar v_o \) :

initial average beam velocity (in./s)

v o :

\({{\bar v_o } \mathord{\left/ {\vphantom {{\bar v_o } c}} \right. \kern-\nulldelimiterspace} c}_2 \) (dimensionless)

Δ:

residual central deflection of beam (in.)

ε:

strain (in./in.)

λ:

slenderness ratio=L/r (dimensionless)

μ:

defined by eq (3) (lbf-s2/in.3)

ρ:

mass density (lbf-s2/in.4)

σ:

uniaxial tensile stress (ksi)

\(\bar \tau \) :

shear stress (ksi)

τ:

\({{\bar \tau } \mathord{\left/ {\vphantom {{\bar \tau } G}} \right. \kern-\nulldelimiterspace} G}\) (dimensionless)

References

  1. Costantino, C. J., “Two-Dimensional Wave Propagation through Non-Linear Media,”J. of Computational Phys.,4 (2),147–170 (Aug. 1969).

    Google Scholar 

  2. Symonds, P. S. andMentel, S., “Impulsive Loading of Plastic Beams with Axial Constraints,”J. of the Mech. and Phys. of Solids,6,186–202 (1958).

    Google Scholar 

  3. Florence, A. L. andFirth, R. D., “Rigid Plastic Beams under Uniformly Distributed Impulses,”J. of Appl. Mech.,32 (3),481–488 (Sept. 1965).

    Google Scholar 

  4. Humphreys, John S., “Plastic Deformation of Impulsively Loaded Straight Clamped Beams,”J. of Appl. Mech.,32 (1),7–10 (March 1965).

    Google Scholar 

  5. Lindholm, U. S. and Bessey, R. L., Elastic-viscoplastic Response of Clamped Beams under Uniformly Distributed Impulse, Southwest Research Inst. Tech. Report AFML-TR-68-396, San Antonio, TX (Jan. 1969).

  6. Witmer, Emmett A., Balmer, Hans A., Leech, John W. andPian, T. H. H., “Large Dynamic Deformations of Beams, Rings, Plates and Shells,”AIAA J.,1 (8),1848–1857 (1963).

    Google Scholar 

  7. Balmer, Hans A., Improved Computer Programs DEPROSS 1, 2 and 3, M.I.T., Aeroelastic Structures Res. Lab. Tech. Report 128-3, Cambridge, MA (Aug. 1965).

  8. Volterra, E. and Zachmanoglou, E. C., Dynamics of Vibrations, Charles E. Merrill, Columbus, OH, 528–529 (1965).

  9. Prescott, J., “Elastic Waves and Vibrations of Thin Rods,”Phil. Mag.,33 (225),703–754 (Oct. 1942).

    Google Scholar 

  10. Leonard, R. W. and Budiansky, B., On Traveling Waves in Beams, NACA Tech. Note 2874, Washington, DC (1953).

  11. Dengler, M. A. and Goland, M., “Transverse Impact of Long Beams, including Rotatory Inertia and Shear Effects,” Proc. First U. S. Nat. Cong. Appl. Mech. (Chicago, IL 1951), published by ASME, New York, 179–186 (1952).

  12. Boley, B. A. andChao, C. C., “Some Solutions of the Timoshenko Beam Equations,”ASME Trans., J. of Appl. Mech.,77,579–586 (1955).

    Google Scholar 

  13. Zajac, E. E., Flexural Waves in Beams, PhD Thesis, Stanford Univ. (1954).

  14. Plass, H. J., “Some Solutions for the Timoshenko Beam Equation for Short Pulse-Type Loading,”ASME Trans., J. of Appl. Mech.,80,379–384 (1958).

    Google Scholar 

  15. Chuo, P. S. and Mortimer, R., A Unified Approach to One-Dimensional Elastic Waves by the Method of Characteristics, Drexel Inst. of Technology Report 160-8, Philadelphia, PA (1966).

  16. Jones, R. P. N., “Transient Flexural Stresses in an Infinite Beam,”Quart. J. of Mech. and Appl. Math.,8,373–384 (1955).

    Google Scholar 

  17. Meirovitch, L., Analytical Methods in Vibrations, MacMillan, London, 128–135 (1967).

    Google Scholar 

  18. Anderson, R. A., “Flexural Vibrations in Uniform Beams According to the Timoshenko Theory,”ASME Trans., J. of Appl. Mech.,75,504–511 (1953).

    Google Scholar 

  19. Thomson, W. T., Vibration Theory and Applications, Prentice-Hall, Englewood Cliffs, NJ, 307–309 (1965).

    Google Scholar 

  20. Garrelick, J., Analytical Investigation of Wave Propagation and Reflection in Timoshenko Beams, PhD Thesis, City College of New York (1969).

  21. Bleich, H. H. and Shaw, R., Dominance of Shear Stresses in Early Stages of Impulsive Motion of Beams, Columbia Univ. Tech. Report 20 to ONR, Project NR 360.002 (Oct. 1957).

  22. Karunes, B. andOnat, E. T., “On the Effect of Shear on Plastic Deformation of Beams under Transverse Impact Loading,”J. of Appl. Mech.,27 (1),107–109 (March 1960).

    Google Scholar 

  23. Sliter, G. et al, Warhead Optimization for the Structural Kill of Reentry Vehicles, Defense Atomic Supply Agency Tech. Report 2215, Washington, DC (July 1969).

  24. Thurston, R. et al, Project Sunburst; Canned Ball; Volume II, Phase I; Experimental Results and Calculations, Los Alamos Tech. Report 4715, Los Alamos, NM (April 1972).

  25. Clark, E. N. et al, Plastic Deformation of Structures, I: Beams, Air Force Flight Dynamics Lab. Tech. Report 64-64, Picatinny Arsenal, Dover, NJ (May 1965).

  26. Seaman, L., SRI PUFF 3 Computer Code for Stress Wave Propagation, Tech. Report No. AFWL-TR-70-51, Air Force Weapons Lab., Kirtland AFB NM (Sept. 1970).

    Google Scholar 

  27. Flugge, W., Stresses in Shells, Springer-Verlag, Berlin, 219–233 (1960).

    Google Scholar 

  28. Forsberg, K., Review of Analytical Methods used to Determine the Modal Characteristics of Cylindrical Shells, NASA Admin. Report CR-613, Washington, DC (Sept. 1966).

  29. Fisher, S. and Menkes, S. B., The Dynamic Response of Finite Elastic Cylinders, CUNY Tech. Report 68-15, City University of New York, 13–18 (Aug. 1968).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menkes, S.B., Opat, H.J. Broken beams. Experimental Mechanics 13, 480–486 (1973). https://doi.org/10.1007/BF02322734

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02322734

Keywords

Navigation