Skip to main content
Log in

Dislocation dynamics

Paper summarizes briefly some of the major advances that have already been made and indicates those areas which appear to be especially deserving of additional attention

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A brief summary is presented on the current status of knowledge regarding the dynamic behavior of crystalline materials in terms of athermal, thermally activated, viscous damping, and relativistic motion of dislocations. It is shown that dislocation concepts have contributed substantially to a better and more unified rationalization of the dynamic behavior of crystalline materials than heretofore possible. Particular emphasis is given to the need for a more complete theoretical understanding of dislocation mechanics. Also, the requirements for more detailed and better experiments are expressed particularly for dislocation-velocity determinations in the viscous damping and relativistic ranges of conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. von Karman, T., andDuwez, P., “Jnl. Appl. Phys.,21,987–994 (1950).

    Google Scholar 

  2. Taylor, G.I., “Plastic Waves in Wire Extended by an Impact Load,” Scientific Papers,1,Cambridge University Press (1958).

  3. Malvern, L. E., “Propagation of Longitudinal Waves of Plastic Deformation in a Bar of Material Exhibiting a Strain-Rate EffectJnl. Appl. Mech.,18,Trans. ASME,73,203–208 (1951).

    Google Scholar 

  4. Kolsky, H., “An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading,”Proc. Phys. Soc. (London) 62,667 (1949).

    Google Scholar 

  5. Cristiesen, N., “European Contributions to Dynamic Loading and Plastic Waves,” Proc. 2nd Symp. on Naval Structures, Pergamon Press, 385–442 (1960).

  6. Seeger, A., Mader, S., andKronmuller, H., “Theory of Work-Hardening in FCC and HCP Single Cyrstals,”Electron Microscopy and Strength of Crystals, Interscience Publishers, Inc., New York, 665–712 (1962).

    Google Scholar 

  7. Saada, G., Acta Met.,8,841 (1960).

    Google Scholar 

  8. Cottrell, A. H., “Relation of Properties to Microstructure,” ASM Monograph, 131 (1954).

  9. Fisher, J. C., Acta. Met., 2, 9–17 (1954).

    Google Scholar 

  10. Cottrell, A. H., Dislocations and Plastic Flow in Crystals, Oxford University Press, London, 133–150 (1956).

    Google Scholar 

  11. Suzuki, H., “The Yield Strength of Binary Alloys,”Dislocations and Mechanical Properties of Crystals, John Wiley and Sons, New York, 361–390 (1957).

    Google Scholar 

  12. Seeger, A., “The Mechanism of Glide and Work Hardening in FCC and HCP Metals,”Dislocations and Mechanical Properties of Crystals, John Wiley and Sons, New York, 243–332 (1956).

    Google Scholar 

  13. Dorn, J. E., and Mitchell, J. B., “Slip Mechanicsms in Single Crystals of Hexagonal Close-Packed Phases,” Proc. 2nd Intl. Symp. on Matls., University of California, Berkeley, June 15–18, 1964, to be published.

  14. Mukherjee, A. K., Mote, J. D., and Dorn, J. E., “Strain Hardening of Single Aluminum Crystals During Polyslip” (submitted for publication Trans. AIME, 1965).

  15. Rosen, A., Nunes, A. C., and Dorn, J. E., “Effect of Strain Hardening on the Low Temperature Thermally Activated Deformation Mechanisms in Polycrystalline Aluminum” (to be published Trans. ASM, 1965).

  16. Howard, E., Barmore, W., Mote, J., andDorn, J. E., Trans. AIME,227,1061 (1963).

    Google Scholar 

  17. Mitra, S. K., Osborne, P. W., andDorn, J. E., Trans. AIME,221,1206 (1961).

    Google Scholar 

  18. Dorn, J. E., andRajnak, S., Trans. AIME,230,1052–1064 (1964).

    Google Scholar 

  19. Friedel, J., “Dislocation Interactions and Internal Strains,” Physiques des Solides, Sorbonne, Paris, 220–262 (1959).

  20. Flinn, P. A., “Solid Solution, Strengthening,” Strengthening Mechanisms in Solids, ASM, 17–50 (1960).

  21. Dorn, J. E., andMote, J. D., “Physical Aspects of Creep,” High Temperature Structure and Materials, Proc. 3rd Symp. on Naval Structure Mech., Pergamon Press, New York, 95–168 (1963).

    Google Scholar 

  22. Barmore, W. L., “Temperature Dependence on the Static and Dynamic Yield Strength of AgMg Single Crystals,”Ph.D. Thesis, University of California, Berkeley (Feb. 1965).

    Google Scholar 

  23. Eshelby, J. D., Proc. Roy. Soc. (London), A197,396 (1957).

    Google Scholar 

  24. Mason, W. P., Jnl. Accoustical Soc. of Am.,32 (4),458–472 (1960).

    Google Scholar 

  25. Lothe, J., Jnl. Appl. Phys.,33 (6),2116–2125 (1962).

    Google Scholar 

  26. Leibfried, G., Z. Physik,127,344, (1950).

    Google Scholar 

  27. Dorn, J. E., and Hauser, F. E., “Dislocation Concepts of Strain Rate Effects,” Proc. Symp. on Structural Dynamics Under High Impulse Loading, Dayton Ohio Conf., 173–178 (1963).

  28. Eshelby, J. D., Proc. Phys. Soc., London, A62,307 (1949).

    Google Scholar 

  29. Weertman, J., “High Velocity Dislocations,”Response of Metals to High Velocity Deformation, Interscience, New York, 205–247 (1960).

    Google Scholar 

  30. Johnston, W. G., andGilman, J. J., Jnl. Appl. Phys.,30,129 (1959).

    Google Scholar 

  31. Gutmanas, E. Yu., Nadgornyi, E. M., andStepanov, A. V., Soviet Phys. Solid State,5 (4),743–747 (1963).

    Google Scholar 

  32. Fleischer, R. L., Jnl. Appl. Phys.,33 (12),3504–3508 (1962).

    Google Scholar 

  33. Erickson, J. S., Jnl. Appl. Phys.,33 (8),2499–2506 (1962).

    Google Scholar 

  34. Stein, D. F., andLow, J. R., Jr., Jnl. Appl. Phys.,31 (2),362–369 (1960).

    Google Scholar 

  35. Chaudhuri, A. R., Patel, J. R., andRubin, L. G., Jnl. Appl. Phys.,33 (9),2736–2746 (1962).

    Google Scholar 

  36. Kabler, M. N., Phys. Rev.,131 (1),54–58 (1963).

    Google Scholar 

  37. Celli, V., Kabler, M., Ninomiya, T., andThomson, R., Phys. Rev.,131 (1),58–72 (1963).

    Google Scholar 

  38. Suzuki, T., Ikushima, A., andAoki, M., Acta Met.,12,1231–1240 (1964).

    Google Scholar 

  39. Granato, A., andLücke, K., Jnl. Appl. Phys.,27,583, (789 (1956).

    Google Scholar 

  40. Granato, A., Hikate, A., andLücke, K., Acta Met.,6,470 (1958).

    Google Scholar 

  41. Alevs, G. A., andThompson, D. O., Jnl. Appl. Phys.,32,203 (1961).

    Google Scholar 

  42. Stern, R. M., andGranato, A., Acta. Met.,10,358 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorn, J.E., Mitchell, J. & Hauser, F. Dislocation dynamics. Experimental Mechanics 5, 353–362 (1965). https://doi.org/10.1007/BF02326081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02326081

Keywords

Navigation