Skip to main content
Log in

The effect of smectite composition on the catalysis of peptide bond formation

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Clay-catalyzed glycine and diglycine oligomerizations were performed as drying/wetting cycles at 80°C. Two trioctahedral smectites (hectorite and saponite), three pure montmorillonites, a ferruginous smectite, an Fe(II)-rich smectite, and three smectites containing goethite admixture were used as catalysts. Highest peptide bond formation was found with trioctahedral smectites. About 7% of glycine was converted to diglycine and diketopiperazine on hectorite after 7 days. In the case of dioctahedral smectites, highest yields were achieved using clays with a negative-layer charge localized in the octahedral sheets (up to 2% of converted glycine after 7 days). The presence of Fe(II) in clay is reflected in a higher efficiency in catalyzing amino acid dimerization (about 3.5% of converted glycine after 7 days). The possible significance of the results for prebiotic chemistry is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames LL Jr, Sand LB, Goldich SS (1958) A contribution on the hector, California, bentonite deposit. Econ Geol 53:22–37

    CAS  Google Scholar 

  • Bailey SW (1980) Structures of layer silicates. In: Brindley GW, Brown BE (eds) Crystal structures of clay minerals and their x-ray identification. Mineralogical Society, London, p 2

    Google Scholar 

  • Basiuk VA, Gromovoy TY, Golovaty VG, Glukhoy AM (1991) Mechanism of amino acid polycondensadon on silica and alumina surface. Orig Life Evol Biosph 20:483–498

    Google Scholar 

  • Bernal JD (1951) The physical basic of life. Routledge and Kegan Paul, London

    Google Scholar 

  • Brindley GW (1980) Order-disorder in clay mineral structures. In: Brindley GW, Brown BE (eds) Crystal structures of clay minerals and their x-ray identification. Mineralogical Society, London, p 169

    Google Scholar 

  • Bujdák J, Slosiariková H, Texler N, Schwendinger M, Rode BM (1994) On the possible role of montmorillonites in prebiotic peptide formation. Mh Chemie 25:1033–1039

    Google Scholar 

  • Bujdák J, Eder A, Yongyai Y, Faybíková K, Rode BM (1995) Peptide chain elongation: a possible role of montmorillonite in prebiotic synthesis of protein precursors. Orig Life Evol Biosph 25:431–441

    Article  PubMed  Google Scholar 

  • Bujdák J, Eder A, Yongyai Y, Faybíková K, Rode BM (1996a) Investigation on the mechanism of peptide chain prolongation on montmorillonite. J Inorg Biochem 61:69–78

    PubMed  Google Scholar 

  • Bujdák J, Hoang LS, Rode BM (1996b) Montmorillonite catalyzed peptide bond formation: the effect of exchangeable cations. J Inorg Biochem (in press)

  • Bujdák J, Hoang LS, Yongyai Y, Rode BM (1996c) The effect of reaction conditions on montmorillonite-catalysed peptide formation. Catal Lett 37:267–272

    Article  Google Scholar 

  • Cairns-Smith AG, Hartman H (1988) Clay minerals and the origin of life. Cambridge University Press, UK

    Google Scholar 

  • Číčel B, Komadel P (1994) Structural formulae of layer silicates. In: Quantitative methods in soil mineralogy. Soil Science Society of America, Medison, USA, p 114

    Google Scholar 

  • Číčel B, Komadel P, Bednáriková E, Madejová J (1992a) Mineralogical composition and distribution of Si, Al, Fe, Mg, and Ca in the fine fractions of some Czech and Slovak bentonites. Geol Carpathica Ser Clays 1:3–7

    Google Scholar 

  • Číčel B, Komadel P, Nigrin M (1992b) Catalytic activity of smectites on dimerization of oleic acid. Collect Czech Chem Commun 57: 666–1671

    Google Scholar 

  • Collins JR, Loew GH, Luke BT, White DH (1988) Theoretical investigation of the role of clay edges in prebiotic peptide bond formation. Orig Life Evol Biosph 18:107–119

    Article  CAS  PubMed  Google Scholar 

  • Ferris JP, Ertem G (1992) Oligomerization of ribonucleotides on montmorillonite: reaction of the 5′-phosphorimidazolide of adenosine. Science 257:1387–1389

    CAS  PubMed  Google Scholar 

  • Ferris JP, Ertem G (1993a) Oligomerization of ribonucleotides: The reaction of the 5′-phosphorimidazolide of adenosine with diadenosine pyrophosphate on montmorillonite and other minerals. Orig Life Evol Biosph 23:229–241

    CAS  Google Scholar 

  • Ferris JP, Ertem G (1993b) Montmorillonite catalysis of prebiotic formation in aqueous solution-a model for the prebiotic formation of RNA. J Am Chem Soc 115:12270–12275

    Article  CAS  PubMed  Google Scholar 

  • Ferris JP, Kamaluddin, Ertem G (1990) Oligomerization reactions of deoxiribonucleotides on montmorillonite clay: the effect of mononucleotide structure, phosphate activation and montmorillonite composition on phosphodiester bond formation. Orig Life Evol Biosph 20:279–291

    CAS  PubMed  Google Scholar 

  • Fripiat JJ, Cruz-Cumplido MI (1974) Clays as catalysts for natural processes. Anon Rev Earth Planet Sci 2:239–252

    Google Scholar 

  • Grim RE (1968) Clay mineralogy. McGraw-Hill, New York, p 77

    Google Scholar 

  • Grim RE, Güven N (1978) Bentonites—geology, mineralogy, properties and uses. Elsevier, Amsterdam, p 24

    Google Scholar 

  • Harder H (1976) Nontronite synthesis at low temperatures. Chem Geol 18:169–180

    Article  CAS  Google Scholar 

  • Harder H (1988) Synthesis of iron-rich clays in environments with little or no oxygen. In: Cairns-Smith AG, Hartman H (eds) Clay minerals and the origin of life. Cambridge University Press, UK, p 91

    Google Scholar 

  • Jewett D, Lawless J (1981) Detection of activated acyl groups formed by heating carboxylic acids with silica. Naturwis 68:570–571

    CAS  Google Scholar 

  • Knechtel MM, Patterson SH (1962) Bentonite deposits of the northern Black Hills district, Wyoming, Montana, and South Dakota. US Geol Surv Bull 1082-M:7–20

    Google Scholar 

  • Komadel P, Stucki JW, Číčel B (1993) Readily HCl-soluble iron in the fine fractions of some Czech bentonites. Geol Carpathica Set Clays 1:11–16

    Google Scholar 

  • Komadel P, Madejová J, Stucki JW (1995) Reduction and reoxidation of nontonite: questions of reversibility. Clays Clay Miner 43:105–110

    CAS  Google Scholar 

  • Lahav N, Chang S (1976) The possible role of solid surface area in condensation reactions during chemical evolution: reevaluation. J Mol Evol 8:357–380

    Article  CAS  PubMed  Google Scholar 

  • Lahav N, White DH (1980) A possible role of fluctuating clay-water systems in the production of ordered prebiotic oligomers. J Mol Evol 10:11–21

    Google Scholar 

  • Lahav N, White D, Chang S (1978) Peptide formation in prebiotic era: thermal condensation in fluctuating clay environments. Science 201:67–69

    CAS  PubMed  Google Scholar 

  • Lawless JG, Levi N (1979) The role of metal ions in chemical evolution: polymerization of alanine and glycine in a cation-exchanged clay environment. J Mol Evol 13:281–286

    Article  CAS  PubMed  Google Scholar 

  • Lego S, Morháčová E, Komadel P (1995) Distribution of Fe in the fine fractions of some czech bentonites. Clay Miner 30:157–164

    CAS  Google Scholar 

  • Madejová J, Komadel P, Číčel B (1992a) Infrared spectra of some Czech and Slovak smectites and their correlation with structural formulas. Geol Carpathica Ser Clays 1:9–12

    Google Scholar 

  • Madejová J, Putyera K, Číčel B (1992b) Proportion of central atoms in octahedra of smectites calculated from infrared spectra. Geol Carpathica Ser Clays 2:117–120

    Google Scholar 

  • Madejová J, Komadel P, Číčel B (1994) Infrared study of octahedral site populations in smectites. Clay Miner 29:319–326

    Google Scholar 

  • Odin GS (1988) The origin of clays on the earth. In: Cairns-Smith AG, Hartman H (eds) Clay minerals and the origin of life. Cambridge University Press, UK, p 91

    Google Scholar 

  • Paecht-Horowitz M (1977) The mechanism of clay catalyzed polymerization of amino acid adenylates. Biosystems 9:93–98

    Article  CAS  PubMed  Google Scholar 

  • Paecht-Horowitz M (1978) The influence of various cations on the catalytic properties of clays. J Mol Evol 11:101–107

    Article  CAS  PubMed  Google Scholar 

  • Paecht-Horowitz M, Eirich FR (1988) The polymerization of amino acid adenylates on sodium montmorillonite with preadsorbed peptides. Orig Life Evol Biosph 18:359–387

    Article  CAS  PubMed  Google Scholar 

  • Paecht-Horowitz M, Labav N (1977) Polymerization of alanine in the presence of a non-swelling montmorillonite. J Mol Evol 10:73–76

    Article  CAS  PubMed  Google Scholar 

  • Paecht-Horowitz M, Berger J, Katchalsky A (1970) Prebiotic synthesis of polypeptides by heterogeneous polycondensation of amino acid adenylates. Nature 228:636–639

    Article  CAS  PubMed  Google Scholar 

  • Ponnamperuma C, Shimoyama A, Friebele (1982) Clay and the origin of life. Orig Life Evol Biosph 12:9–40

    CAS  Google Scholar 

  • Post JL (1984) Saponite from near Ballarat, California. Clays Clay Miner 32:147–153

    CAS  Google Scholar 

  • Rao M, Odom DG, Oro J (1980) Clays in prebiological chemistry. J Mol Evol 15:317–331

    Article  CAS  PubMed  Google Scholar 

  • Reynolds RC Jr (1988) Precambrian clays. In: Cairns-Smith AG, Hartman H (eds) Clay minerals and the origin of life. Cambridge University Press, UK, p 89

    Google Scholar 

  • Theng BKG (1974) The Chemistry of Clay-Organic Reactions. Hilger, Bristol, pp 158, 261

    Google Scholar 

  • van Olphen H, Fripiat JJ (1979) Data handbook for clay minerals and other non-metallic minerals. Pergamon Press, Oxford, UK

    Google Scholar 

  • Wang MC (1991) Catalysis of nontronite in phenols and glycine transformations. Clays Clay Miner 39:202–210

    CAS  Google Scholar 

  • Weaver CE, Pollard LD (1973) Developments in sedimentology 15. The chemistry of clay minerals. Elsevier Scientific, Amsterdam, The Netherlands, p 55

    Google Scholar 

  • White DH, Erickson JC (1980) Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environments. J Mol Evol 16:279–290

    CAS  PubMed  Google Scholar 

  • White DH, Erickson JC (1981) Enhancement of peptide bond formation by polyribonucleotides on clay surfaces in fluctuating environments. J Mol Evol 17:19–26

    Article  CAS  Google Scholar 

  • White DH, Kennedy RM, Macklin J (1984) Acyl silicates and acyl aluminates as activated intermediates in peptide formation on clays. Orig Life Evol Biosph 14:273–278

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: J. Bujdák

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bujdák, J., Rode, B.M. The effect of smectite composition on the catalysis of peptide bond formation. J Mol Evol 43, 326–333 (1996). https://doi.org/10.1007/BF02339007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02339007

Key words

Navigation