Skip to main content
Log in

Theoretical analysis of arterial hemodynamics including the influence of bifurcations

Part I: Mathematical model and prediction of normal pulse patterns

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Based on earlier theoretical studies, a new mathematical model is developed for the prediction of the pressure and flow pulses propagating in the arterial system. This model permits a more realistic simulation of bifurcation and stenoses than was possible previously. By making use of a computer, it allows us to calculate the pulse shapes along branching arteries. It is based on the assumption that each arterial conduit can be represented by a suitable combination of three basic segments, namely segments with no or only small-calibre side branches, short segments with big side branches, and short segments with pathological changes of the conduit. Along segments of the first type, the pulse propagation is calculated with the aid of the method of characteristics and a first order integration. For the other two types, the linearized mass balance and momentum equations are utilized together with the boundary conditions to determine the pressure and flow values at the ends of the segment. A standard case for the human arterial conduit extending from the heart to the foot, with eight major branches, is defined using published data and prescribing the ejection pattern from the heart. The computed pulse shapes and their changes with propagation exhibit the characteristic features observed in man under normal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anliker, M., M. Casty, P. Friedli, R. Kubli, and H. Keller, Noninvasive measurement of blood flow. In:Cardiovascular Flow Dynamics and Measurements, edited by N.H.C. Hwang and N.A. Normann, Baltimore, MD: University Park Press, 1977.

    Google Scholar 

  2. Anliker, M., M.B. Histand, and E. Ogden. Dispersion and attenuation of small pressure waves in the canine aorta.Circ. Res. 23:539, 1968.

    CAS  PubMed  Google Scholar 

  3. Anliker, M., R.L. Rockwell, and E. Ogden. Nonlinear analysis of flow pulses and shock waves in arteries. Part I: Derivation and properties of mathematical model. Part II: Parametric study related to clinical problems.J. Appl. Math. Phys. (ZAMP). 22:217–246 (Part I), 563–581 (Part II), 1971.

    Google Scholar 

  4. Anliker, M., J.C. Stettler, P. Niederer, and R. Holenstein. Prediction of shape changes of propagating flow and pressure pulses in human arteries. In:The Arterial System, edited by R.D. Bauer and R. Busse. Heidelberg: Springer, 1978.

    Google Scholar 

  5. Back, L., J. Radbill, and D. Crawford. Analysis of pulsatile, viscous blood flow through diseased coronary arteries of man.J. Biomech. 10:339, 1977.

    CAS  PubMed  Google Scholar 

  6. Bennett, C.O., and J.E. MyresMomentum, Heat and Mass Transfer, 2nd ed., Chemical Eng. Ser., New York: McGraw-Hill, 1974.

    Google Scholar 

  7. Bollinger, A.Funktionelle Angiologie, Stuttgart: Thieme, 1979.

    Google Scholar 

  8. Casty, M. Perkutane atraumatische Flussmessung in grösseren hautnahen Gefässen mit einem vielkanaligen gepulsten Ultraschall-Dopplergerat Dissertation. University of Zurich, 1976.

  9. Clark, M.E. and R.H. Kufahl. Simulation of the cerebral macrocirculation. In:Cardiovascular System Dynamics, edited by J. Baan and A. Noordergraaf. Boston: MIT Press, 1978.

    Google Scholar 

  10. Elsner, J. Mathematische Modellstudien der Druck-und Flusspulse in menschlichen Arterien. Dissertation No.5582. Swiss Federal Institute of Technology, Zurich, Switzerland, 1975.

    Google Scholar 

  11. Forbes, L.K. A note on the solution of the one-dimensional unsteady equations of arterial blood flow by the method of characteristics.J. Aust. Math. Soc. 21:45–52, 1979.

    Google Scholar 

  12. Holenstein, R., P. Niederer, and J.C. Stettler. A structural damping model of arterial viscoelasticity in predicting flow and pressure pulses. In: Conference Digest, 1st International Conference on Mechanics in Medicine and Biology. Baden-Baden: Verlag Gerhard Witzstrock, 1978.

    Google Scholar 

  13. Holenstein, R., P. Niederer, and M. Anliker. A viscoelastic model for use in predicting arterial pulse waves.ASME J. Biomech. Eng. 102:318–319, 1980.

    CAS  Google Scholar 

  14. Hübscher, W. and M. Anliker, Instantane Flussmessungen in grossen Blutgefässen mittles 128-kanaligem Ultraschall-Doppler-Gerät und Mikroprozessor.Medita. 9a/1977.

  15. Hughes, T. and J. Lubliner. On the one-dimensional theory of blood flow in larger vessels.Math. Biosci. 18:161, 1973.

    Article  Google Scholar 

  16. Lister, M. The numerical solution of hyperbolic differential equations by the method of characteristics. In:Mathematics for Digital Computers, New York: J. Wiley & Sons 1960.

    Google Scholar 

  17. McDonald, R.Blood Flow in Arteries, 2nd ed. London: Arnold 1974.

    Google Scholar 

  18. Prandtl, L.F▀rer durch die Strömungslehre, 3rd ed. Braunschweig 1948, p. 159.

  19. Raines, J., M. Jaffrin, and A.H. Shapiro. A computer simulation of arterial dynamics in the human leg.J. Biomech. 7:77, 1974.

    Article  CAS  PubMed  Google Scholar 

  20. Rockwell, R.L., M. Anliker, and J. Elsner. Model studies of the pressure and flow pulses in a viscoelastic arterial conduit.J. Franklin Inst. 297:405 1974.

    Google Scholar 

  21. Rudinger, G., Shock waves in mathematical models of the aorta.J. Appl. Mech. 37:34, 1970.

    Google Scholar 

  22. Rumberger, J.A. and R.M. Nerem. A method-of-characteristic calculation of coronary blood flow.J. Fluid. Mech. 182:429, 1977.

    Google Scholar 

  23. Schaaf, B.W. and P.H. Abbrecht, Digital computer simulation of human systemic arterial pulse. wave transmission: A nonlinear model.J. Biomech. 5:345, 1972.

    Article  CAS  PubMed  Google Scholar 

  24. Stettler, J.C. Theoretische Untersuchungen der arteriellen Hämodynamik unter Berücksichtigung von Verzweigungen. Dissertation. Swiss Federal Institute of Technology, Zurich, Switzerland, 1979.

    Google Scholar 

  25. Streeter, V.L., W.R. Keitzer, and D.F. Bohr. Pulsatile pressure and flow through distensible vessels.Circ. Res. 13:3, 1963.

    CAS  PubMed  Google Scholar 

  26. Westerhof, N., F. Bosmann, C.J. DeVries, and A. Noordergraaf. Analog studies of the human systemic arterial tree.J. Biomech. 2:121–143, 1969.

    Article  CAS  PubMed  Google Scholar 

  27. Wetterer, E. and Th. Kenner,Dynamik des Arterienpulses. Springer, 1968.

  28. Witzig, K. Ueber die Wellenbewegung zäher Flüssigkeiten in elastischen Röhren. Dissertation. University of Bern, 1914.

  29. Womersley, J.R. An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries. WADC Tech. Rep. TR 56-614, 1957.

  30. Zielke, W. Frequency-dependent friction in transient pipe flow.ASME J. Basic Eng. 90: Series D, No. 1, 109, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by Grant 3. 121.–0.77 from the Swiss National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stettler, J.C., Niederer, P. & Anliker, M. Theoretical analysis of arterial hemodynamics including the influence of bifurcations. Ann Biomed Eng 9, 145–164 (1981). https://doi.org/10.1007/BF02363533

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02363533

Keywords

Navigation