Skip to main content
Log in

Histologic and physiologic evaluation of electrically stimulated peripheral nerve: Considerations for the selection of parameters

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Helical electrodes were implanted around the left and right common peroneal nerves of cats. Three weeks after implantation one nerve was stimulated for 4–16 hours using charge-balanced, biphasic, constant current pulses. Compound action potentials (CAP) evoked by the stimulus were recorded from over the cauda equina before, during and after the stimulation. Light and electron microscopy evaluations were conducted at various times following the stimulation. The mere presence of the electrode invariably resulted in thickened epineurium and in some cases increased peripheral endoneurial connective tissue beneath the electrodes. Physiologic changes during stimulation included elevation of the electrical threshold of the large axons in the nerve. This was reversed within one week after stimulation at a frequency of 20 Hz, but often was not reversed following stimulation at 50–100 Hz. Continuous stimulation at 50 Hz for 8–16 hours at 400 μA or more resulted in neural damage characterized by endoneurial edema beginning within 48 hours after stimulation, and early axonal degeneration (EAD) of the large myelinated fibers, beginning by 1 week after stimulation. Neural damage due to electrical stimulation was decreased or abolished by reduction of the duration of stimulation, by stimulating at 20 Hz (vs. 50 Hz) or by use of an intermittent duty cycle. These results demonstrate that axons in peripheral nerves can be irreversely damaged by 8–16 hours of continuous stimulation at 50 Hz. However, the extent to which these axons may subsequently regenerate is uncertain. Therefore, protocols for functional electrical stimulation in human patients probably should be evaluated individually in animal studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, W. E., The blood supply of nerves. II. The effects of exclusion of its regional sources of supply on the sciatic nerve of the rabbit. J. Anat. 77:243–250; 1942.

    Google Scholar 

  2. Agnew, W.F.; McCreery, D.B.; Yuen, T.G.H.; Bullara, L.A.. Electrical stimulation of peripheral nerve (Abstr) Proceed. IEEE/Ninth Annual Conf. Engnr. Med. and Biol. Soc. 3:1563–1564; 1987.

    Google Scholar 

  3. Asbury, A.K. Renaut bodies. A forgotten endoneurial structure. J. Neuropath. Exp. Neurol. 22:334–343; 1973.

    Google Scholar 

  4. Bell, M.A.; Weddell, A.G.M. A descriptive study of the blood vessels of the sciatic nerve in the rat, man and other mammals. Brain 107:871–898; 1984.

    PubMed  Google Scholar 

  5. Beuch, W.; Friede, R.L. Remodeling of nerve structure in experimental isoniazid neuropathy in the rat. Brain 109:759–769; 1986.

    Google Scholar 

  6. Boyd, I.A.; Kalu, K.U. Scaling factor relating conduction velocity and diameter for myelinated afferent fibers in the cat hind limb. J. Physiol. 289:277–297; 1978.

    Google Scholar 

  7. Brindley, G.S.; Polkey, C.E.; Rushton, D.N. Sacral anterior root stimulators for bladder control in paraplegia. Paraplegia 20:365–381; 1982.

    CAS  PubMed  Google Scholar 

  8. Brummer, S.B.; Turner, M.J. Electrochemical considerations for safe stimulation of the nervous system. IEEE Trans. Biomed. Eng. BME 24:59–63; 1977.

    CAS  Google Scholar 

  9. Burton, C. Implanted devices for electronic augmentation of nervous system function. Med. Instrum. 9:221–233; 1975.

    CAS  PubMed  Google Scholar 

  10. Davis, L.A.; Gordon, T.; Hoffer, J.A.; Jhamaudas, J.; Stein, R.B. Compound action potentials recorded from mammalian peripheral nerves following ligation or resuturing. J. Physiol (Lows)285:543–559; 1978.

    CAS  Google Scholar 

  11. Dyck, P.J.; Karnes, J.; Lais, A.; Lofgrew, E.P.; Stevens, J.C. Pathologic alterations of the peripheral nervous system of humans In: Dyck, P.J.; Thomas, P.K.; Lambert, E.H.; Bringe, R., eds.Peripheral Neuropathy. Philadelphia: W.B. Saunders; 1984: pp. 760–870.

    Google Scholar 

  12. Eisenberg, B.R.; Brown, J.M.; Salmons, S. Restoration of fast muscle characteristics following cessation of chronic stimulation. The ultrastructure of slow-to-fast transformation. Cell Tis. Res. 238:221–230; 1984.

    CAS  Google Scholar 

  13. Gillespie, M.J.; Stein, R.B. The relationship between axon diameter, myelin thickness and conduction velocity during atrophy of mammalian peripheral nerves. Brain Res. 259:41–56; 1983.

    Article  CAS  PubMed  Google Scholar 

  14. Glenn, W.W.L.; Holcomb, W.G.; Hogan, J.F.; Kaneyuki, T.; Kim, J. Long-term stimulation of the phrenic nerve for diaphragm pacing. In: Hambrecht, F.T.; Reswick, J.B., eds. Functional Electrical Stimulation: Applications in Neural Prostheses. New York: Marcel Dekker, Inc.; 1977: pp. 97–112.

    Google Scholar 

  15. Glenn, W.W.L.; Phelps, M.L. Diaphragm pacing by electrical stimulation of the phrenic nerve. Neurosurg. 17:974–984; 1985.

    CAS  Google Scholar 

  16. Gorman, P.H.; Mortimer, J.T. The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation. IEEE Trans. Biomed. Eng. BME 30:407–414; 1983.

    CAS  Google Scholar 

  17. Hershberg, P.I.; Sohn, D.; Agrawal, G.P.; Kantrowitz, A. Histologic changes in continuous, longterm electrical stimulation of a peripheral nerve. IEEE Trans. Biomed. Eng. 14:109–114; 1967.

    CAS  PubMed  Google Scholar 

  18. Hiscoe, H.B. Distribution of nodes and incisures in normal and regenerated nerve fibers. Anat. Rec. 99:447–475; 1947.

    Article  Google Scholar 

  19. Jacobs, J.; LeQuesne, P.M. Toxic disorders of the nervous system. In: Adams, J.H.; Corsellis, J.A.N.; Duchen, L.W., eds. Greenfield Neuropathology. New York: John Wiley & Sons, 4th Ed.; 1984: pp. 627–698.

    Google Scholar 

  20. Kim, J.H.; Manuelidis, E.E.; Glenn, W.W.; Fukuda, Y.; Cole, D.S.; Hogan, J.F. Light and electron microscopic studies of phrenic nerves after long-term electrical stimulation. J. Neurosurg. 58:84–91; 1983.

    CAS  PubMed  Google Scholar 

  21. Kim, J.H.; Manuelidis, E.E.; Glenn, W.W.; Kaneyuki, T. Diaphragm pacing — Histopathological changes in the phrenic nerve following long-term electrical stimulation. J. Thor. Cardiovasc. Surg. 72:602–608; 1976.

    CAS  Google Scholar 

  22. Kiwerski, J.; Weiss, M.; Pasniczek, R. Electro-stimulation of the median nerve in tetraplegics by means of implanted stimulators. Paraplegia 21:322–326; 1983.

    CAS  PubMed  Google Scholar 

  23. MacKinnon, S.E.; Dellon, A.L.; Hudson, A.R.; Hunter, D.A. Chronic nerve compression—an experimental model in the rat. Annals. Plast. Surg. 13:112–120; 1984.

    CAS  Google Scholar 

  24. McNeal, D.R.; Waters, R.; Reswick, J. Experience with implanted electrodes at Rancho Los Amigos Hospital. Neurosurg. 2:228–229; 1977.

    Google Scholar 

  25. Makitie, J.; Teravainen, H. Peripheral nerve injury and recovery after temporary ischemia. Acta. Neuropath. 37:55–63; 1977.

    CAS  PubMed  Google Scholar 

  26. Meier, C.; Sollman, H. Regeneration of cauda equina fibers after transection and end-to-end suture. J. Neurol. 215:81–90; 1977.

    CAS  PubMed  Google Scholar 

  27. Munsat, T.L.; McNeal, D.R.; Waters, R.L. Preliminary observations on prolonged stimulation of peripheral nerve in man. Excerpta. Medica. Intl. Congress, Series No. 360:42–50; 1974.

  28. Nashold, B.S., Jr.; Goldner, J.L.; Mullen, J.B.; Bright, D.S. Long-term pain control by direct peripheral nerve stimulation. J. Bone and Joint Surg. 64-A:1–10; 1982.

    Google Scholar 

  29. Picaza, J.A.; Hunter, S.E.; Cannon, B.W. Pain suppression by peripheral nerve stimulation. Appl. Neurophysiol. 40:223–234; 1977/78.

    Google Scholar 

  30. Rydevik, B.; Brown, M.D.; Lundborg, G. Pathoanatomy and pathophysiology of nerve root compression. Spine 9:1–15; 1984.

    Google Scholar 

  31. Schmidt, R.A.; Bruschini, H.; Van Gool, J.; Tanagho, E.A. Mieturition and the male genitourinary response to sacral root stimulation. Invest. Urol. 17:125–130; 1979.

    CAS  PubMed  Google Scholar 

  32. Shelden, C.H.; Pudenz, R.H.; Doyle, J. Electrical control of facial pain. Amer. J. Surg. 114:209–212; 1967.

    Article  CAS  PubMed  Google Scholar 

  33. Strojnik, P.; Acimovic, R.; Vavken, E.; Simic, V.; Stanic, U. Treatment of drop foot using an implantable peroneal underknee stimulator. Scand. J. Rehab.Med. 19:37–43; 1987.

    CAS  Google Scholar 

  34. Sweet, W.H. Control of pain by direct electrical stimulation of peripheral nerves. Clin. Neurosurg. 23:103–111; 1976.

    CAS  PubMed  Google Scholar 

  35. Talonen, P.; Baer, G.; Hakkinen, V.; Markkula, H. Implanted phrenic nerve stimulations in 3 tetraplegic patients. Life Support Systems 2: Supplement 1; 1984.

    Google Scholar 

  36. Thuroff, J.W.; Bazeed, M.A.; Schmidt, R.A.; Wiggin, D.M.; Tanagho, E.A. Functional pattern of sacral root stimulation in dog micturition. J. Urol. 127:1031–1033; 1982.

    CAS  PubMed  Google Scholar 

  37. Villiers, de, R; Nose, Y.; Meier, W.; Kantrowitz, A. Long term, continuing electrostimulation of a peripheral nerve. Trans. Am. Soc. Artif. Internal Organs 10:357–365; 1964.

    Google Scholar 

  38. Waters, R.L.; McNeal, D.R.; Faloon, W.; Clifford, B. Functional electrical stimulation of the peroneal nerve for hemiplegia—Long-term clinical follow-up. J. Bone Joint Surg. 67-A:792–793; 1985.

    Google Scholar 

  39. Waters, R.L.; McNeal, D.; Perry, J. Experimental correction of footdrop by electrical stimulation of the peroneal nerve. J. Bone Joint Surg. Ser. A 57:1047–1054; 1975.

    CAS  Google Scholar 

  40. Yuen, T.G.H.; Agnew, W.F.; Bullara, L.A. Histopathological evaluation of dog sacral nerve following chronic electromicturition. Neurosurg. 14:449–455; 1984.

    CAS  Google Scholar 

  41. Zilvold, G.; Hermens, H. J.; Kreuwel, H.; de Waal, C.; Alste, J. V. Experiences with an implantable nervus femoralis stimulator. Proceed. Eighth Intern. Symp. on ECHE, Dubrovnik, 1984.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agnew, W.F., McCreery, D.B., Yuen, T.G.H. et al. Histologic and physiologic evaluation of electrically stimulated peripheral nerve: Considerations for the selection of parameters. Ann Biomed Eng 17, 39–60 (1989). https://doi.org/10.1007/BF02364272

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364272

Keywords

Navigation